Skip to main content
Log in

A Randomized Polynomial Kernel for Subset Feedback Vertex Set

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

The subset feedback vertex set problem generalizes the classical feedback vertex set problem and asks, for a given undirected graph G = (V, E), a set SV, and an integer k, whether there exists a set X of at most k vertices such that no cycle in GX contains a vertex of S. It was independently shown by Cygan et al. (ICALP ’11, SIDMA ’13) and Kawarabayashi and Kobayashi (JCTB ’12) that subset feedback vertex set is fixed-parameter tractable for parameter k. Cygan et al. asked whether the problem also admits a polynomial kernelization. We answer the question of Cygan et al. positively by giving a randomized polynomial kernelization for the equivalent version where S is a set of edges. In a first step we show that edge subset feedback vertex set has a randomized polynomial kernel parameterized by |S| + k with \(\mathcal {O}(|S|^{2}k)\) vertices. For this we use the matroid-based tools of Kratsch and Wahlström (FOCS ’12) that for example were used to obtain a polynomial kernel for s-multiway cut. Next we present a preprocessing that reduces the given instance (G, S, k) to an equivalent instance (G′, S′, k′) where the size of S′ is bounded by \(\mathcal {O}(k^{4})\). These two results lead to a randomized polynomial kernel for subset feedback vertex set with \(\mathcal {O}(k^{9})\) vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The reduction builds upon a previous one by Even et al. [6] who reduce multiway cut to weighted subset fvs using a single vertex in S that has infinite weight.

  2. The latter is deterministic by applying a specialized matroid parity algorithm due to Tong et al. [22].

References

  1. Burrage, K., Estivill-Castro, V., Fellows, M.R., Langston, M.A., Mac, S., Rosamond, F.A.: The undirected feedback vertex set problem has a poly(k) kernel. In: IWPEC 2006, LNCS, vol. 4169, pp 192–202. Springer (2006). http://dx.doi.org/https://doi.org/10.1007/11847250_18

  2. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., Van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: FOCS 2011, pp 150–159. IEEE Computer Society (2011). https://doi.org/10.1109/FOCS.2011.23

  3. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset feedback vertex set is fixed-parameter tractable. SIAM. J. Discrete Math. 27(1), 290–309 (2013). https://doi.org/10.1137/110843071

    Article  MathSciNet  MATH  Google Scholar 

  4. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. J. ACM 61(4), 23:1–23:27 (2014). https://doi.org/10.1145/2629620

    Article  MathSciNet  MATH  Google Scholar 

  5. Diestel, R.: Graph theory (graduate texts in mathematics) (2005)

  6. Even, G., Naor, J., Schieber, B., Zosin, L.: Approximating minimum subset feedback sets in undirected graphs with applications. SIAM J. Discrete Math. 13(2), 255–267 (2000). https://doi.org/10.1137/S0895480195291874

    Article  MathSciNet  MATH  Google Scholar 

  7. Even, G., Naor, J., Zosin, L.: An 8-approximation algorithm for the subset feedback vertex set problem. SIAM J. Comput. 30(4), 1231–1252 (2000). https://doi.org/10.1137/S0097539798340047

    Article  MathSciNet  MATH  Google Scholar 

  8. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representative sets with applications in parameterized and exact algorithms. In: SODA 2014, pp 142–151. SIAM (2014). https://doi.org/10.1137/1.9781611973402.10

  9. Gallai, T.: Maximum-minimum sätze und verallgemeinerte faktoren von graphen. Acta Math. Hung. 12(1-2), 131–173 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kawarabayashi, K., Kobayashi, Y.: Fixed-parameter tractability for the subset feedback set problem and the S-cycle packing problem. J. Comb. Theory, Ser. B 102 (4), 1020–1034 (2012). https://doi.org/10.1016/j.jctb.2011.12.001

    Article  MathSciNet  MATH  Google Scholar 

  11. Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Process. Lett. 114(10), 556–560 (2014). https://doi.org/10.1016/j.ipl.2014.05.001

    Article  MathSciNet  MATH  Google Scholar 

  12. Kratsch, S., Wahlström, M.: Representative sets and irrelevant vertices: New tools for kernelization. In: FOCS 2012, pp 450–459. IEEE Computer Society (2012). https://doi.org/10.1109/FOCS.2012.46

  13. Lokshtanov, D., Ramanujan, M.S., Saurabh, S.: Linear time parameterized algorithms for subset feedback vertex set. In: ICALP 2015, LNCS, vol. 9134, pp 935–946. Springer (2015). https://doi.org/10.1007/978-3-662-47672-7_76

  14. Lovász, L.: Flats in matroids and geometric graphs. In: Combinatorial surveys (Proc. Sixth British Combinatorial Conf., Royal Holloway Coll., Egham, 1977), pp 45–86. Academic Press, London (1977)

  15. Lovász, L.: Matroid matching and some applications. J. Comb. Theory, Ser. B 28(2), 208–236 (1980). https://doi.org/10.1016/0095-8956(80)90066-0

    Article  MathSciNet  MATH  Google Scholar 

  16. Marx, D.: A parameterized view on matroid optimization problems. Theor. Comput. Sci. 410(44), 4471–4479 (2009). https://doi.org/10.1016/j.tcs.2009.07.027

    Article  MathSciNet  MATH  Google Scholar 

  17. Marx, D., O’Sullivan, B., Razgon, I.: Finding small separators in linear time via treewidth reduction. ACM Trans. Algorithm. 9(4), 30 (2013). https://doi.org/10.1145/2500119

    MathSciNet  MATH  Google Scholar 

  18. Perfect, H.: Applications of Menger’s graph theorem. J. Math. Anal. Appl. 22, 96–111 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  19. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004). https://doi.org/10.1016/j.orl.2003.10.009

    Article  MathSciNet  MATH  Google Scholar 

  20. Schrijver, A.: A short proof of Mader’s sigma-paths theorem. J. Comb. Theory, Ser. B 82(2), 319–321 (2001). https://doi.org/10.1006/jctb.2000.2029

    Article  MathSciNet  MATH  Google Scholar 

  21. Thomassé, S.: A 4k 2 kernel for feedback vertex set. ACM Trans. Algorithm. 6(2), 32:1–32:8 (2010). https://doi.org/10.1145/1721837.1721848

    MathSciNet  MATH  Google Scholar 

  22. Tong, P., Lawler, E.L., Vazirani, V.V.: Solving the weighted parity problem for gammoids by reduction to graphic matching. Computer Science Division University of California, USA (1982)

    MATH  Google Scholar 

  23. Wahlström, M.: Half-integrality, lp-branching and FPT algorithms. In: SODA 2014, pp 1762–1781. SIAM (2014). https://doi.org/10.1137/1.9781611973402.128

Download references

Acknowledgments

We would like to thank the anonymous reviewers for several useful comments on the presentation of our results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva-Maria C. Hols.

Additional information

This article is part of the Topical Collection on Theoretical Aspects of Computer Science

A preliminary version of this work appeared in the proceedings of the 33th International Symposium on Theoretical Aspects of Computer Science (STACS 2016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hols, EM.C., Kratsch, S. A Randomized Polynomial Kernel for Subset Feedback Vertex Set. Theory Comput Syst 62, 63–92 (2018). https://doi.org/10.1007/s00224-017-9805-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-017-9805-6

Keywords

Navigation