Skip to main content
Log in

Gauge Enhancement of Super M-Branes Via Parametrized Stable Homotopy Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A key open problem in M-theory is to explain the mechanism of “gauge enhancement” through which M-branes exhibit the nonabelian gauge degrees of freedom seen perturbatively in the limit of 10d string theory. In fact, since only the twisted K-theory classes represented by nonabelian Chan–Paton gauge fields on D-branes have an invariant meaning, the problem is really the understanding the M-theory lift of the classification of D-brane charges by twisted K-theory. Here we show that this problem has a solution by universal constructions in rational super homotopy theory. We recall how double dimensional reduction of super M-brane charges is described by the cyclification adjunction applied to the 4-sphere, and how M-theory degrees of freedom hidden at ADE singularities are induced by the suspended Hopf action on the 4-sphere. Combining these, we demonstrate that, in the approximation of rational homotopy theory, gauge enhancement in M-theory is exhibited by lifting against the fiberwise stabilization of the unit of this cyclification adjunction on the A-type orbispace of the 4-sphere. This explains how the fundamental D6 and D8 brane cocycles can be lifted from twisted K-theory to a cohomology theory for M-brane charge, at least rationally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. At least in mathematics it is not uncommon that a theory is conjectured to exist before its actual nature is known—famous examples of this include the theory of motives, which has meanwhile been discovered, and the field with one element.

  2. In [Wi96, first line on p. 8] the argument was introduced as an “obvious guess”. Most subsequent references cite this as a fact, e.g. the review [My03, Sec. 3], despite the lack of a formal argument.

  3. [HW06]: “As it has been proposed that [this] theory is a supermembrane theory but there are some reasons to doubt that interpretation, we will non-committedly call it the M-theory, leaving to the future the relation of M to membranes.

  4. While a derivation of K-theory from M-theory is suggested by the title of [DMW03], that article only checks that the behavior of the partition function of the 11d supergravity C-field is compatible with the a priori K-theory classification of D-branes. Seeking a generalized cohomology describing the M-field and M-branes was originally advocated for in [Sa05a, Sa05b, Sa06, Sa10].

  5. This torsion is in the sense of cohomology or homotopy classes. In the following paragraph we use torsion in the sense of differential (super)geometry. We hope that the distinction will be clear from the context.

  6. Here and elsewhere, “(pb)" denotes a (homotopy-)pullback square.

  7. we will always assume that all topological spaces are compactly generated, so that \(\mathrm {Maps}(G,Y)\) is the exponential object in the category of compactly generated spaces—this completely specifies the topology.

  8. The identity \(d H_7 = F_2 \wedge F_6 - \tfrac{1}{2} F_4 \wedge F_4\) for the type IIA \(\mathrm {NS5}\)-brane flux does not hold after fiberwise stabilization in (60)—indeed, the flux form \(H_7\) is part of the obstruction to completing the zig-zag truncation map \(\tau _6\) in Example 2.48 to an actual homomorphism.

  9. Models of particle physics obtained from dimensional reductions of M-theory on singular manifolds of \(G_2\)-holonomy (see [Ka17]) are among the globally supersymmetric extensions of the Standard Model of particle physics that are, so far, still consistent with experimental constraints [BGK18]. If and when supersymmetric extensions of the Standard Model are ruled out, then this will also rule out dimensional reductions of M-theory on singular fiber manifolds of \(G_2\)-holonomy as realistic models for particle physics. However, this particular type of dimensional reduction is in no way dictated by the theory, and are certainly not generic amongst all possibilities, but were motivated by the expectation of global supersymmetry in the first place. What is dictated by the theory is local supersymmetry, which is already present as soon as fermions are.

  10. From the point of view of homotopy theory, there is little difference between working over \(\mathbb {Q}\) or over \(\mathbb {R}\).

References

  1. Acharya, B.S., Gukov, S.: M theory and singularities of exceptional holonomy manifolds. Phys. Rep. 392, 121–189 (2004). arXiv:hep-th/0409191

    Article  ADS  MathSciNet  Google Scholar 

  2. Achúcarro, A., Evans, J., Townsend, P., Wiltshire, D.: Super \(p\)-branes. Phys. Lett. B 198, 441–446 (1987). [spire:22286]

  3. Aharony, O., Bergman, O., Jafferis, D., Maldacena, J.: \(N=6\) superconformal Chern-Simons-matter theories, M2-branes and their gravity duals. J. High Energy Phys. 0810, 091 (2008). arXiv:0806.1218

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Aharony, O., Gubser, S.S., Maldacena, J., Ooguri, H., Oz, Y.: Large N field theories, string theory and gravity. Phys. Rep. 323, 183–386 (2000). arXiv:hep-th/9905111

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Ando, M., Blumberg, A., Gepner, D.: Twists of \(K\)-theory and \(TMF\). In: Superstrings, Geometry, Topology, and \(C^*\)-Algebras, Proceedings of Symposia in Pure Mathematics, vol. 81, pp. 27–63. American Mathematical Society, Providence, RI (2010) arXiv:1002.3004

  6. Ando, M., Blumberg, A., Gepner, D., Hopkins, M.J., Rezk, C.: An \(\infty \)-categorical approach to \(R\)-line bundles, \(R\)-module Thom spectra, and twisted \(R\)-homology. J. Topol. 7, 869–893 (2014). arXiv:1403.4325

    Article  MathSciNet  MATH  Google Scholar 

  7. Atiyah, M., Segal, G.: Twisted K-theory and cohomology. In: Inspired By SS Chern, Nankai Tracts in Mathematics, vol. 11, pp. 5–43. World Scientific Publishing, Hackensack, NJ (2006). arXiv:math/0510674

  8. Bagger, J., Lambert, N.D.: Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev. D 77, 065008 (2008). arXiv:0711.0955 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  9. Bagger, J., Lambert, N., Mukhi, S., Papageorgakis, C.: Multiple membranes in M-theory. Phys. Rep. 527, 1–100 (2013). arXiv:1203.3546

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bandos, I., Lechner, K., Nurmagambetov, A., Pasti, P., Sorokin, D., Tonin, M.: Covariant action for the super-five-brane of M-theory. Phys. Rev. Lett. 78, 4332–4334 (1997). arXiv:hep-th/9701149

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Becker, K., Becker, M., Schwarz, J.: String Theory and M-Theory: A Modern Introduction. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  12. Berkovits, N., Schnabl, M.: Yang–Mills action from open superstring field theory. J. High Energy Phys. 0309, 022 (2003). arXiv:hep-th/0307019

    Article  ADS  MathSciNet  Google Scholar 

  13. Bergman, A., Varadarajan, U.: Loop groups, Kaluza–Klein reduction and M-theory. J. High Energy Phys. 0506, 043 (2005). arXiv:hep-th/0406218

    Article  ADS  MathSciNet  Google Scholar 

  14. Bergshoeff, E., de Roo, M., Green, M., Papadopoulos, G., Townsend, P.: Duality of Type II 7-branes and 8-branes. Nucl. Phys. B 470, 113–135 (1996). arXiv:hep-th/9601150

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Bergshoeff, E., Sezgin, E., Townsend, P.K.: Supermembranes and eleven-dimensional supergravity. Phys. Lett. B 189, 75–78 (1987). [spire:248230]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Blumberg, A.: Equivariant Homotopy Theory. Lecture Notes (2017). https://github.com/adebray/equivariant_homotopy_theory

  17. Borceux, F.: Basic Category Theory, vol. 1 of Handbook of Categorical Algebra. Cambridge University Press, Cambridge (1995)

  18. Bousfield, A., Guggenheim, V.: On PL deRham Theory and Rational Homotopy Type, Memoirs of the AMS, vol. 179. American Mathematical Society, Providence, RI (1976)

    Google Scholar 

  19. Bouwknegt, P., Carey, A.L., Mathai, V., Murray, M.K., Stevenson, D.: Twisted K-theory and K-theory of bundle gerbes. Commun. Math. Phys. 228, 17–49 (2002). arXiv:hep-th/0106194

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Bouwknegt, P., Evslin, J., Mathai, V.: T-duality: topology change from H-flux. Commun. Math. Phys. 249, 383–415 (2004). arXiv:hep-th/0306062

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Bouwknegt, P., Mathai, V.: D-branes, B-fields and twisted K-theory. J. High Energy Phys. 0003, 007 (2000). arXiv:hep-th/0002023

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Braunack-Mayer, V.: Rational parametrised stable homotopy theory, PhD thesis, Zurich University (2018) https://ncatlab.org/schreiber/show/thesis+Braunack-Mayer

  23. Braunack-Mayer, V.: Strict algebraic models for rational parametrised spectra I (in preparation)

  24. Braunack-Mayer, V.: Strict algebraic models for rational parametrised spectra II (in preparation)

  25. Brunetti, R., Fredenhagen, K., Rejzner, K.: Quantum gravity from the point of view of locally covariant quantum field theory. Commun. Math. Phys. 345, 741–779 (2016). arXiv:1306.1058

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Bunke, U., Nikolaus, T.: Twisted differential cohomology. arXiv:1406.3231

  27. Buschmann, M., Gonzalez, E., Kane, G.L.: Revisiting Gluinos at LHC. arXiv:1803.04394

  28. Callister, A.K., Smith, D.J.: Topological charges in \(\text{ SL }(2,\mathbb{R})\) covariant massive 11-dimensional and Type IIB SUGRA. Phys. Rev. D 80, 125035 (2009). arXiv:0907.3614

    Article  ADS  MathSciNet  Google Scholar 

  29. Candiello, A., Lechner, K.: Duality in supergravity theories. Nucl. Phys. B 412, 479–501 (1994). arXiv:hep-th/9309143

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Čap, A., Slovák, J.: Parabolic Geometries I: Background and General Theory. American Mathematical Society, Providence, RI (2009)

    Book  MATH  Google Scholar 

  31. Cartan, É.: Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie). Ann. scient. de l’Ecole Normale Supérieure, Sér. 3 40, 325–412 (1923)

  32. Castellani, L., D’Auria, R., Fré, P.: Supergravity and Superstrings–A Geometric Perspective. World Scientific, Singapore (1991)

    Book  MATH  Google Scholar 

  33. Cederwall, M., von Gussich, A., Nilsson, B.E.W., Sundell, P., Westerberg, A.: The Dirichlet super-p-branes in ten-dimensional Type IIA and IIB supergravity. Nucl. Phys. B 490, 179–201 (1997). [hep-th/9611159]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Chamseddine, A.H., Sabra, W.A.: \(D=7\) \({\rm SU}(2)\) gauged supergravity from \(D=10\) supergravity. Phys. Lett. B 476, 415–419 (2000). arXiv:hep-th/9911180

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Chryssomalakos, C., de Azcárraga, J., Izquierdo, J., Pérez Bueno, C.: The geometry of branes and extended superspaces. Nucl. Phys. B 567, 293–330 (2000). arXiv:hep-th/9904137

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Clay Mathematics Institute, Yang–Mills and Mass Gap http://claymath.org/millennium-problems/yang-mills-and-mass-gap

  37. Coletti, E., Sigalov, I., Taylor, W.: Abelian and nonabelian vector field effective actions from string field theory. J. High Energy Phys. 0309, 050 (2003). arXiv:hep-th/0306041

    Article  ADS  MathSciNet  Google Scholar 

  38. Crabb, M., James, I.: Fibrewise Homotopy Theory. Springer, London Ltd, London (1998)

    Book  MATH  Google Scholar 

  39. Cvetic, M., Liu, J.T., Lü, H., Pope, C.N.: Domain-wall supergravities from sphere reduction. Nucl. Phys. B 560, 230–256 (1999). arXiv:hep-th/0005137

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Cvetic, M., Lü, H., Pope, C.N.: Consistent Kaluza–Klein sphere reductions. Phys. Rev. D 62, 064028 (2000). arXiv:hep-th/0003286

    Article  ADS  MathSciNet  Google Scholar 

  41. Cvetic, M., Lü, H., Pope, C.N., Sadrzadeh, A., Tran, T.A.: \(S^3\) and \(S^4\) reductions of type IIA supergravity. Nucl. Phys. B 590, 233–251 (2000). arXiv:hep-th/0005137

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. D’Auria, R., Fré, P.: Geometric supergravity in \(D = 11\) and its hidden supergroup. Nucl. Phys. B 201, 101–140 (1982). https://ncatlab.org/nlab/files/GeometricSupergravity.pdf

  43. de Azcárraga, J., Townsend, P.: Superspace geometry and the classification of supersymmetric extended objects. Phys. Rev. Lett. 62, 2579–2582 (1989). [spire:284635]

    Article  ADS  MathSciNet  Google Scholar 

  44. Del Zotto, M., Heckman, J., Tomasiello, A., Vafa, C.: 6d conformal matter. J. High Energy Phys. 54 (2015). arXiv:1407.6359

  45. Diaconescu, D., Moore, G., Witten, E.: \(E_8\)-gauge theory and a derivation of K-theory from M-theory. Adv. Theor. Math. Phys. 6, 1031–1134 (2003). arXiv:hep-th/0005090

    Article  MathSciNet  Google Scholar 

  46. Distler, J., Freed, D., Moore, G.: Orientifold Précis. In: Sati, H., Schreiber, U. (eds.) Proceedings of Symposia in Pure Mathematics, AMS (2011). arXiv:0906.0795

  47. Donoghue, J.F.: Introduction to the effective field theory description of gravity. arXiv:gr-qc/9512024

  48. du Val, P.: On isolated singularities of surfaces which do not affect the conditions of adjunction, I, II and III. Proc. Camb. Philos. Soc. 30, 453–459, 460–465, 483–491 (1934)

  49. Duff, M.: Kaluza–Klein theory in perspective. In: Proceedings of the Symposium. The Oskar Klein Centenary, World Scientific, Singapore (1994). arXiv:hep-th/9410046

  50. Duff, M. (ed.): The World in Eleven Dimensions: Supergravity, Supermembranes and M-theory. IoP, Bristol (1999)

    MATH  Google Scholar 

  51. Duff, M., Inami, T., Pope, C., Sezgin, E., Stelle, K.: Semiclassical quantization of the supermembrane. Nucl. Phys. B 297, 515–538 (1988). [spire:247064]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Duff, M., Howe, P., Inami, T., Stelle, K.: Superstrings in \(D =10\) from Supermembranes in \(D = 11\). Phys. Lett. B 191, 70–74 (1987). (reprinted in [Du99]). [spire:245249]

  53. Egeileh, M., El Chami, F.: Some remarks on the geometry of superspace supergravity. J. Geom. Phys. 62, 53–60 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Evslin, J.: What does(n’t) K-theory classify? Second Modave summer school in mathematical physics arXiv:hep-th/0610328

  55. Evslin, J., Sati, H.: Can D-branes wrap nonrepresentable cycles? J. High Energy Phys. 0610, 050 (2006). arXiv:hep-th/0607045

    Article  ADS  MathSciNet  Google Scholar 

  56. Fazzi, M.: Higher-dimensional field theories from type II supergravity. arXiv:1712.04447

  57. Félix, Y., Oprea, J., Tanré, D.: Algebraic Models in Geometry. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  58. Figueroa-O’Farrill, J., Santi, A.: Spencer cohomology and eleven-dimensional supergravity. Commun. Math. Phys. 349, 627–660 (2017). arXiv:1511.08737

    Article  ADS  MATH  Google Scholar 

  59. Figueroa-O’Farrill, J., Simón, J.: Supersymmetric Kaluza–Klein reductions of M2 and M5-branes. Adv. Theor. Math. Phys. 6, 703–793 (2003). arXiv:hep-th/0208107

    Article  MathSciNet  Google Scholar 

  60. Figueroa-O’Farrill, J., Simón, J.: Supersymmetric Kaluza–Klein reductions of M-waves and MKK-monopoles. Class. Quantum Gravity 19, 6147–6174 (2002). [hep-th/0208108]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Figueroa-O’Farrill, J., Simón, J.: Supersymmetric Kaluza–Klein reductions of AdS backgrounds. Adv. Theor. Math. Phys. 8, 217–317 (2004). arXiv:hep-th/0401206

    Article  MathSciNet  MATH  Google Scholar 

  62. Fiorenza, D., Sati, H., Schreiber, U.: Super Lie \(n\)-algebra extensions, higher WZW models, and super \(p\)-branes with tensor multiplet fields. arXiv:1308.5264

  63. Fiorenza, D., Sati, H., Schreiber, U.: The WZW term of the M5-brane and differential cohomotopy. J. Math. Phys. 56, 102301 (2015). arXiv:1506.07557

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Fiorenza, D., Sati, H., Schreiber, U.: Rational sphere valued supercocycles in M-theory and type IIA string theory. J. Geom. Phys. 114, 91–108 (2017). arXiv:1606.03206

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Fiorenza, D., Sati, H., Schreiber, U.: T-Duality from super Lie \(n\)-algebra cocycles for super p-branes. arXiv:1611.06536

  66. Fiorenza, D., Sati, H., Schreiber, U.: T-duality in rational homotopy theory via \(L_\infty \)-algebras. Geom. Topol. Math. Phys. 1 (2018), special volume in tribute of Jim Stasheff and Dennis Sullivan. arXiv:1712.00758 [math-ph]

  67. Fiorenza, D., Sati, H., Schreiber, U.: Higher T-duality of M-branes. arXiv:1803.05634

  68. Fiorenza, D., Sati, H., Schreiber, U.: The rational higher structure of M-theory. In: Proceedings of Higher Structures in M-Theory, Durham Symposium 2018, Fortsch. Phys. (2019)

  69. Freed, D.: Dirac charge quantization and generalized differential cohomology. In: Surveys in Differential Geometry. International Press, Somerville, MA, pp. 129–194. (2000) arXiv:hep-th/0011220

  70. Freed, D., Hopkins, M.: On Ramond–Ramond fields and K-theory. J. High Energy Phys. 0005, 044 (2000). arXiv:hep-th/0002027

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Freed, D., Witten, E.: Anomalies in string theory with D-branes. Asian J. Math. 3, 819–852 (1999). arXiv:hep-th/9907189

    Article  MathSciNet  MATH  Google Scholar 

  72. Gómez, C., Manjarín, J.J.: A note on the dyonic D6-brane. In: 6th International Workshop on Conformal Field Theory and Integrable Models. Landau Institute, Sept (2002). arXiv:hep-th/0302096

  73. Gorbatov, E., Kaplunovsky, V.S., Sonnenschein, J., Theisen, S., Yankielowicz, S.: On heterotic orbifolds, M theory and Type I’ brane engineering. J. High Energy Phys. 0205, 015 (2002). arXiv:hep-th/0108135

    Article  ADS  MathSciNet  Google Scholar 

  74. Grady, D., Sati, H.: Massey products in differential cohomology via stacks. J. Homotopy Relat. Struct. 13, 169–223 (2017). arXiv:1510.06366

    Article  MathSciNet  MATH  Google Scholar 

  75. Grady, D., Sati, H.: Twisted differential generalized cohomology theories and their Atiyah–Hirzebruch spectral sequence. Alg. Geom. Topol. (2019) arXiv:1711.06650

  76. Grady, D., Sati, H.: Ramond–Ramond fields and twisted differential K-theory. arXiv:1903.08843 (preprint)

  77. Gueven, R.: Black \(p\)-brane solutions of \(D = 11\) supergravity theory. Phys. Lett. B 276, 49–55 (1992). (reprinted in [Du99]) [spire:338203]

  78. Guillemin, V.: The integrability problem for \(G\)-structures. Trans. Am. Math. Soc. 116, 544–560 (1965). [jstor:1994134]

    MathSciNet  MATH  Google Scholar 

  79. Gustavsson, A.: Algebraic structures on parallel M2-branes. Nucl. Phys. B 811, 66–76 (2009). arXiv:0709.1260 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. Hanany, A., Witten, E.: Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics. Nucl. Phys. B 492, 152–190 (1997). arXiv:hep-th/9611230

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. Henriques, A., Gepner, D.: Homotopy theory of orbispaces. arXiv:math/0701916

  82. Hess, K.: Rational homotopy theory: a brief introduction. In: Interactions Between Homotopy Theory and Algebra. Contemporary Mathematics, vol. 436, pp. 175–202. arXiv:math.AT/0604626

  83. Hill, M.A., Hopkins, M.J., Ravenel, D.C.: On the non-existence of elements of Kervaire invariant one. Ann. Math. 184, 1–262 (2016). arXiv:0908.3724

    Article  MathSciNet  MATH  Google Scholar 

  84. Hořava, P., Witten, E.: Heterotic and Type I string dynamics from eleven dimensions. Nucl. Phys. B 460, 506–524 (1996). arXiv:hep-th/9510209

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. Howe, P.: Weyl superspace. Phys. Lett. B 415, 149–155 (1997). arXiv:hep-th/9707184

    Article  ADS  MathSciNet  Google Scholar 

  86. Huerta, J., Schreiber, U.: M-theory from the superpoint. Lett. Math. Phys. 108, 2695–2727 (2018). arXiv:1702.01774

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. Huerta, J., Sati, H., Schreiber, U.: Real ADE-equivariant (co)homotopy of super M-branes, Commun. Math. Phys. (2019). arXiv:1805.05987

  88. Hull, C.M.: Massive string theories from M-theory and F-theory. J. High Energy Phys. 11, 027 (1998). arXiv:hep-th/9811021

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. Hull, C.M., Warner, N.P.: Non-compact gaugings from higher dimensions. Class. Quantum Gravity 5, 1517–1530 (1988)

    Article  ADS  MATH  Google Scholar 

  90. Ibáñez, L., Uranga, A.: String Theory and Particle Physics: An Introduction to String Phenomenology. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  91. Kane, G.: String Theory and the Real World. Morgan & Claypool, San Rafael (2017)

    Book  MATH  Google Scholar 

  92. Klein, F.: Vergleichende Betrachtungen über neuere geometrische Forschungen (1872) translation by M. W. Haskell, A comparative review of recent researches in geometry, Bull. New York Math. Soc. 2, (1892–1893), 215–249

  93. Körschgen, A.: A comparison of two models of orbispaces. Homol. Homotpy Appl. 20, 329–358 (2018). arXiv:1612.04267 [math.AT]

    Article  MathSciNet  MATH  Google Scholar 

  94. Kriz, I., Sati, H.: Type IIB string theory, S-duality, and generalized cohomology. Nucl. Phys. B 715, 639–664 (2005). arXiv:hep-th/0410293

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. Kuhn, N.J.: Goodwillie towers and chromatic homotopy: an overview Geom. Topol. Monogr. 10, 245–279 (2007). arXiv:math/0410342

    Article  MATH  Google Scholar 

  96. Lechner, K., Tonin, M.: Worldvolume and target space anomalies in the \(D=10\) super-fivebrane sigma-model. Nucl. Phys. B 475, 545–561 (1996). arXiv:hep-th/9603094

    Article  ADS  MATH  Google Scholar 

  97. Lee, T.: Covariant open bosonic string field theory on multiple D-branes in the proper-time gauge. J. Korean Phys. Soc. 71, 886–903 (2017). arXiv:1609.01473

    Article  ADS  Google Scholar 

  98. Lott, J.: The geometry of supergravity torsion constraints. Commun. Math. Phys. 133, 563–615 (1990). see arXiv:math/0108125

  99. Lurie, J.: Higher Topos Theory. Princeton University Press, Princeton (2009). arXiv:math/0608040

    Book  MATH  Google Scholar 

  100. Lurie, J.: Higher algebra. http://math.harvard.edu/~lurie/papers/HA.pdf

  101. Manjarín, J.J.: Topics on D-brane charges with B-fields. Int. J. Geom. Methods Mod. Phys. 1, 545–602 (2004). arXiv:hep-th/0405074

    Article  MathSciNet  MATH  Google Scholar 

  102. Mathai, V., Sati, H.: Some relations between twisted K-theory and \(E_8\) gauge theory. J. High Energy Phys. 03, 016 (2004). arXiv:hep-th/0312033

    Article  ADS  MathSciNet  Google Scholar 

  103. May, J.P., Sigurdsson, J.: Parametrized Homotopy Theory. American Mathematical Society, Providence, RI (2006)

    Book  MATH  Google Scholar 

  104. Minasian, R., Moore, G.: K-theory and Ramond–Ramond charge. J. High Energy Phys. 9711, 002 (1997). arXiv:hep-th/9710230

    Article  ADS  MathSciNet  MATH  Google Scholar 

  105. Montgomery, D., Zippin, L.: Examples of transformation groups. Proc. Am. Math. Soc. 5, 460–465 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  106. Moore, G.: Physical Mathematics and the Future, Talk at Strings (2014). http://www.physics.rutgers.edu/~gmoore/PhysicalMathematicsAndFuture.pdf

  107. Moore, G., Saulina, N.: T-duality, and the K-theoretic partition function of type IIA superstring theory. Nucl. Phys. B 670, 27–89 (2003). arXiv:hep-th/0206092

    Article  ADS  MathSciNet  MATH  Google Scholar 

  108. Moore, G., Witten, E.: Self-duality, Ramond–Ramond fields, and K-theory. J. High Energy Phys. 0005, 032 (2000). arXiv:hep-th/9912279

    Article  ADS  MathSciNet  MATH  Google Scholar 

  109. Myers, R.C.: Nonabelian phenomena on D-branes. Class. Quantum Gravity 20, S347–S372 (2003). arXiv:hep-th/0303072

    Article  ADS  MATH  Google Scholar 

  110. Nastase, H., Vaman, D.: On the nonlinear KK reductions on spheres of supergravity theories. Nucl. Phys. B 583, 211–236 (2000). arXiv:hep-th/0002028

    Article  ADS  MathSciNet  MATH  Google Scholar 

  111. Nastase, H., Vaman, D., van Nieuwenhuizen, P.: Consistency of the \({\rm AdS}_7 \times S^4\) reduction and the origin of self-duality in odd dimensions. Nucl. Phys. B 581, 179–239 (2000). arXiv:hep-th/9911238

    Article  ADS  MathSciNet  MATH  Google Scholar 

  112. Nikolaus, T., Schreiber, U., Stevenson, D.: Principal \(\infty \)-bundles—general theory. J. Homotopy Relat. Struct. 10, 749–801 (2015). arXiv:1207.0248

    Article  MathSciNet  MATH  Google Scholar 

  113. Pao, P.S.: Nonlinear circle actions on the 4-sphere and twisting spun knots. Topology 17(3), 291–296 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  114. Pilch, K., van Nieuwenhuizen, P., Townsend, P.K.: Compactification of \(D=11\) supergravity on \(S^4\) (or \(11=7+4\), too). Nucl. Phys. B 242, 377–392 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  115. Polchinski, J.: String Theory. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  116. Ravenel, D.: Complex Cobordism and Stable Homotopy Groups of Spheres. American Mathematical Society, Providence, RI (2003). http://web.math.rochester.edu/people/faculty/doug/mu.html

  117. Reid, M.: Young Person’s guide to canonical singularities. In: Bloch, S. (ed.) Algebraic Geometry—Bowdoin 1985, Part 1, Proceedings of Symposia in Pure Mathematics, 46 Part 1, pp. 345–414. American Mathematical Society, Providence, RI (1987)

  118. Roig, A.: Minimal resolutions and other minimal models. Publ. Matemátiques 37, 285–303 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  119. Roig, A.: Formalizability of DG modules and morphisms of CDG algebras. Ill. J. Math. 38, 434–451 (1994). [euclid:1255986724]

    Article  MathSciNet  MATH  Google Scholar 

  120. Roig, A., Saralegi-Aranguren, M.: Minimal models for non-free circle actions. Ill. J. Math. 44(4), 784–820 (2000). arXiv:math/0004141

    Article  MathSciNet  MATH  Google Scholar 

  121. Sakaguchi, M.: IIB-branes and new spacetime superalgebras. J. High Energy Phys. 0004, 019 (2000). arXiv:hep-th/9909143

    Article  ADS  MathSciNet  MATH  Google Scholar 

  122. Sati, H.: M-theory and characteristic classes. J. High Energy Phys. 0508, 020 (2005). arXiv:hep-th/0501245

    Article  ADS  MathSciNet  Google Scholar 

  123. Sati, H.: Flux quantization and the M-theoretic characters. Nucl. Phys. B 727, 461–470 (2005). arXiv:hep-th/0507106

    Article  ADS  MathSciNet  MATH  Google Scholar 

  124. Sati, H.: Duality symmetry and the form fields of M-theory. J. High Energy Phys. 0606, 062 (2006). arXiv:hep-th/0509046

    Article  ADS  MathSciNet  Google Scholar 

  125. Sati, H.: Geometric and topological structures related to M-branes, Superstrings, geometry, topology, and \(C^*\)-algebras. In: Proceedings of Symposia in Pure Mathematics, vol. 81, pp. 181–236. American Mathematical Society, Providence, RI (2010). arXiv:1001.5020

  126. Sati, H.: Framed M-branes, corners, and topological invariants. J. Math. Phys. 59, 062304 (2018). arXiv:1310.1060

    Article  ADS  MathSciNet  MATH  Google Scholar 

  127. Sati, H., Schreiber, U.: Higher T-duality of M-branes via local supersymmetry. arXiv:1805.00233

  128. Schreiber, U.: Higher Cartan Geometry, Lecture Notes, Prague (2015).https://ncatlab.org/schreiber/show/Higher+Cartan+Geometry

  129. Schreiber, U.: From the Superpoint to T-Folds, Lecture Notes, Prague (2016). https://ncatlab.org/schreiber/show/From+the+Superpoint+to+T-Folds

  130. Schreiber, U.: Introduction to Homotopy Theory, Lecture Notes, Bonn (2017) https://ncatlab.org/nlab/show/Introduction+to+Homotopy+Theory

  131. Schreiber, U.: Introduction to Stable Homotopy Theory, Lecture Notes, Bonn (2017) https://ncatlab.org/nlab/show/Introduction+to+Stable+homotopy+theory+--+1

  132. Schreiber, U.: Super \(p\)-Brane Theory emerging from Super Homotopy Theory, Talk at String Math 17, Hamburg (2017). https://ncatlab.org/schreiber/show/StringMath2017

  133. Schwede, S., Shipley, B.: Stable model categories are categories of modules. Topology 42, 103–153 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  134. Sen, A.: A note on enhanced gauge symmetries in M- and string theory. J. High Energy Phys. 9709, 001 (1997). arXiv:hep-th/9707123

    Article  ADS  MathSciNet  Google Scholar 

  135. Shipley, B.: \(H \mathbb{Z}\)-algebra spectra are differential graded algebras. Am. J. Math. 129, 351–379 (2007). arXiv:math/0209215

    Article  MathSciNet  MATH  Google Scholar 

  136. Snaith, V.: Localized stable homotopy of some classifying spaces. Math. Proc. Camb. Philos. Soc. 89(2), 325–330 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  137. Sullivan, D.: Infinitesimal computations in topology. Publ. Math. de I.H.É.S 47, 269–331 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  138. Townsend, P.: The eleven-dimensional supermembrane revisited. Phys. Lett. B 350, 184–187 (1995). arXiv:hep-th/9501068

    Article  ADS  MathSciNet  Google Scholar 

  139. Townsend, P.: D-branes from M-branes. Phys. Lett. B 373, 68–75 (1996). arXiv:hep-th/9512062

    Article  ADS  MathSciNet  Google Scholar 

  140. Vigué-Poirrier, M., Burghelea, D.: A model for cyclic homology and algebraic K-theory of 1-connected topological spaces. J. Differ. Geom. 22, 243–253 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  141. Wellen, F.: Formalizing Cartan geometry in modal homotopy type theory. PhD thesis, KIT (2017). https://ncatlab.org/schreiber/show/thesis+Wellen

  142. Witten, E.: Search for a realistic Kaluza–Klein theory. Nucl. Phys. B 186, 412–428 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  143. Witten, E.: String theory dynamics in various dimensions. Nucl. Phys. B 443, 85–126 (1995). arXiv:hep-th/9503124

    Article  ADS  MathSciNet  MATH  Google Scholar 

  144. Witten, E.: Bound states of strings and \(p\)-branes. Nucl. Phys. B 460, 335–350 (1996). arXiv:hep-th/9510135

    Article  ADS  MathSciNet  MATH  Google Scholar 

  145. Witten, E.: D-branes and K-theory. J. High Energy Phys. 9812, 019 (1998). arXiv:hep-th/9810188

    Article  ADS  MATH  Google Scholar 

  146. Witten, E.: Overview of K-theory applied to strings. Int. J. Mod. Phys. A 16, 693–706 (2001). arXiv:hep-th/0007175

    Article  ADS  MathSciNet  MATH  Google Scholar 

  147. Witten, E.: Superstring perturbation theory revisited. arXiv:1209.5461

Download references

Acknowledgements

We are grateful to Augustí Roig and Martintxo Saralegi-Aranguren for discussion of [RS00], as well as to David Corfield, Ted Erler, Domenico Fiorenza, and David Roberts for useful comments. We also thank the anonymous referee for their careful reading and helpful suggestions. VBM acknowledges partial support of SNF Grant No. 200020_172498/1. This research was partly supported by the NCCR SwissMAP, funded by the Swiss National Science Foundation, and by the COST Action MP1405 QSPACE, supported by COST (European Cooperation in Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs Schreiber.

Additional information

Communicated by C. Schweigert

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Urs Schreiber on leave from Czech Academy of Science.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braunack-Mayer, V., Sati, H. & Schreiber, U. Gauge Enhancement of Super M-Branes Via Parametrized Stable Homotopy Theory. Commun. Math. Phys. 371, 197–265 (2019). https://doi.org/10.1007/s00220-019-03441-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03441-4

Navigation