Skip to main content
Log in

Open Gromov–Witten Theory of \(K_{{\mathbb {P}}^2}, K_{{{\mathbb {P}}^1}\times {{\mathbb {P}}^1}}, K_{W{\mathbb {P}}\left[ 1,1,2\right] }, K_{{{\mathbb {F}}}_1}\) and Jacobi Forms

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It was known through the efforts of many works that the generating functions in the closed Gromov–Witten theory of \(K_{{\mathbb {P}}^2}\) are meromorphic quasi-modular forms (Coates and Iritani in Kyoto J Math 58(4):695–864, 2018; Lho and Pandharipande in Adv Math 332:349–402, 2018; Coates and Iritani in Gromov–Witten invariants of local \({\mathbb {P}}^{2}\) and modular forms, arXiv:1804.03292 [math.AG], 2018) basing on the B-model predictions (Bershadsky et al. in Commun Math Phys 165:311–428, 1994; Aganagic et al. in Commun Math Phys 277:771–819, 2008; Alim et al. in Adv Theor Math Phys 18(2):401–467, 2014). In this article, we extend the modularity phenomenon to \(K_{{{\mathbb {P}}^1}\times {{\mathbb {P}}^1}}, K_{W{\mathbb {P}}[1,1,2]}, K_{{\mathbb {F}}_1}\). More importantly, we generalize it to the generating functions in the open Gromov–Witten theory using the theory of Jacobi forms where the open Gromov–Witten parameters are transformed into elliptic variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. For a complete treatment of extended Käher cone in the toric orbifold setting, we refer to [Iri09, Section 3.1]. It coincides with the actual Kähler cone when \({{\mathcal {X}}}\) is a smooth manifold. In general the extended Kähler cone is not necessarily a simplicial cone, but in our four examples they are.

  2. In this paper we follow the convention in [Zag08] for the \(\theta \)-constants.

  3. These definitions could be made more general by replacing \({\mathcal {J}}\) by the ring of meromorphic Jacobi forms for the modular subgroup \(\Gamma \), but the former are already good enough for the purpose of this work.

  4. This is a universal family with the base having a moduli stack interpretation. See e.g., [Kat76, Dub94] for a nice account on this.

  5. Only the affine part of the curve is relevant in topological recursion.

  6. The should not be confused with the Kähler parameter discussed earlier.

  7. The differential \(\lambda \), which involves logarithm, is derived as the dimension reduction of the Calabi–Yau form of the non-compact CY threefold [CKYZ99, AV00, AKV02] and relates to mirror symmetry. Its rigorous definition uses mixed Hodge structure [Bat93, Sti97, KM10]. In the current genus one case, we understand the logarithm via the formal group of the elliptic curve [Sil09]. In the literature, sometimes another version \(\lambda =ydx\) is used. While much easier to deal with, ydx is not directly related to toric CY threefolds by mirror symmetry.

References

  1. Aganagic, M., Bouchard, V., Klemm, A.: Topological strings and (almost) modular forms. Commun. Math. Phys. 277, 771–819 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Aganagic, M., Klemm, A., Marino, M., Vafa, C.: The topological vertex. Commun. Math. Phys. 254, 425–478 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Aganagic, M., Klemm, A., Vafa, C.: Disk instantons, mirror symmetry and the duality web. Z. Naturforsch. A 57(1–2), 1–28 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Alim, M., Länge, J.D., Mayr, P.: Global properties of topological string amplitudes and orbifold invariants. JHEP 1003, 113 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Alim, M., Scheidegger, E., Yau, S.-T., Zhou, J.: Special polynomial rings, quasi modular forms and duality of topological strings. Adv. Theor. Math. Phys. 18(2), 401–467 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aganagic, M., Vafa, C.: Mirror symmetry, D-branes and counting holomorphic discs. arXiv:hep-th/0012041 (2000)

  7. Batyrev, V.V.: Variations of the mixed Hodge structure of affine hypersurfaces in algebraic tori. Duke Math. J. 69(2), 349–409 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borwein, J.M., Borwein, P.B.: A cubic counterpart of Jacobi’s identity and the AGM. Trans. Am. Math. Soc. 323(2), 691–701 (1991)

    MathSciNet  MATH  Google Scholar 

  9. Borwein, J.M., Borwein, P.B., Garvan, F.G.: Some cubic modular identities of Ramanujan. Trans. Am. Math. Soc. 343(1), 35–47 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Berndt, B.C., Bhargava, S., Garvan, F.G.: Ramanujan’s theories of elliptic functions to alternative bases. Trans. Am. Math. Soc. 347(11), 4163–4244 (1995)

    MathSciNet  MATH  Google Scholar 

  11. Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Holomorphic anomalies in topological field theories. Nucl. Phys. B 405, 279–304 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311–428 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Bouchard, V., Klemm, A., Mariño, M., Pasquetti, S.: Remodeling the B-model. Commun. Math. Phys. 287(1), 117–178 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bouchard, V., Klemm, A., Mariño, M., Pasquetti, S.: Topological open strings on orbifolds. Commun. Math. Phys. 296(3), 589–623 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Coates, T., Iritani, H.: A Fock sheaf for Givental quantization. Kyoto J. Math. 58(4), 695–864 (2018a)

  16. Coates, T., Iritani, H.: Gromov–Witten invariants of local \({\mathbb{P}}^{2}\) and modular forms. arXiv:1804.03292 [math.AG] (2018b)

  17. Chiang, T.M., Klemm, A., Yau, Shing-Tung, Zaslow, E.: Local mirror symmetry: calculations and interpretations. Adv. Theor. Math. Phys. 3, 495–565 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cox, D.A., Little, J.B., Schenck, H.K.: Toric Varieties, Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence, RI (2011)

    Google Scholar 

  19. Connell, I.: Elliptic Curve Handbook. McGill University, Montreal. http://webs.ucm.es/BUCM/mat/doc8354.pdf (1996)

  20. Cho, C.-H., Poddar, M.: Holomorphic orbidiscs and Lagrangian Floer cohomology of symplectic toric orbifolds. J. Differ. Geom. 98(1), 21–116 (2014)

    Article  MATH  Google Scholar 

  21. Dabholkar, A., Murthy, S., Zagier, D.: Quantum black holes, wall crossing, and mock modular forms. arXiv:1208.4074 [hep-th] (2012)

  22. Dolgachev, I.V.: Lectures on modular forms. Fall (1997/1998). http://www.math.lsa.umich.edu/~idolga/ModularBook.pdf

  23. Dubrovin, B.: Geometry of 2D topological field theories. In: Integrable Systems and Quantum Groups, pp. 120–348. Springer, Berlin (1996)

  24. Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. Commun. Number Theory Phys. 1(2), 347–452 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Eynard, B., Orantin, N., Marino, M.: Holomorphic anomaly and matrix models. J. High Energy Phys. 2007(06), 058 (2007)

    Article  MathSciNet  Google Scholar 

  26. Eichler, M., Zagier, D.: The theory of Jacobi forms, Progress in Mathematics, vol. 55, Birkhäuser Boston, Inc., Boston, MA (1985)

  27. Fay, J.D.: Fourier coefficients of the resolvent for a Fuchsian group. J. reine angew. Math. 293, 143–203 (1977)

    MathSciNet  MATH  Google Scholar 

  28. Fang, B., Liu, C.-C., Tseng, H.-H.: Open–closed Gromov–Witten invariants of 3-dimensional Calabi–Yau smooth toric DM stacks. arXiv:1212.6073 [math.AG] (2012)

  29. Fang, B., Liu, C.-C.M., Zong, Z.: On the remodeling conjecture for toric Calabi–Yau 3-orbifolds. arXiv:1604.07123 [math.AG] (2016)

  30. Grimm, T.W., Klemm, A., Marino, M., Weiss, M.: Direct integration of the topological string. JHEP 0708, 058 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Haghighat, B., Klemm, A., Rauch, M.: Integrability of the holomorphic anomaly equations. JHEP 0810, 097 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Hosono, S.: Central charges, symplectic forms, and hypergeometric series in local mirror symmetry. In: Mirror Symmetry V, AMS/IP Studies in Advanced Mathematics, vol. 38, pp. 405–439. American Mathematical Society, Providence, RI (2006)

  33. Hori, K., Vafa, C.: Mirror symmetry. arXiv:hep-th/0002222 [hep-th] (2000)

  34. Iritani, H.: An integral structure in quantum cohomology and mirror symmetry for toric orbifolds. Adv. Math. 222(3), 1016–1079 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Katz, N.M.: p-adic interpolation of real analytic Eisenstein series. Ann. Math. 104, 459–571 (1976)

  36. Kokotov, A, Korotkin, D: Bergmann tau-function on Hurwitz spaces and its applications. ArXiv preprint arXiv:math-ph/0310008 (2003)

  37. Kokotov, A., Korotkin, D.: Tau-functions on Hurwitz spaces. Math. Phys. Anal. Geom. 7(1), 47–96 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kokotov, A., Korotkin, D.: Tau-functions on spaces of Abelian differentials and higher genus generalizations of Ray–Singer formula. J. Differ. Geom. 82(1), 35–100 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Katz, S., Liu, C.-C.M.: Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc. Adv. Theor. Math. Phys. 5(1), 1–49 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Konishi, Y., Minabe, S.: Local B-model and mixed Hodge structure. Adv. Theor. Math. Phys. 14(4), 1089–1145 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kaneko, M., Zagier, D.: A generalized Jacobi theta function and quasimodular forms. In: The Moduli Space of Curves (Texel Island, 1994), Progress in Mathematics, vol. 129, pp. 165–172. Birkhäuser, Boston (1995)

  42. Klemm, A., Zaslow, E.E.: Local mirror symmetry at higher genus. AMS IP Stud. Adv. Math. 23, 183–208 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lho, H.: Gromov–Witten invariants of Calabi–Yau manifolds with two Kähler parameters. arXiv:1804.04399 [math.AG] (2018)

  44. Liu, C.-C.M.: Moduli of J-holomorphic curves with Lagrangian boundary conditions and open Gromov–Witten invariants for an \(S^1\)-equivariant pair. arXiv:math/0210257 [math.SG] (2002)

  45. Lho, H., Pandharipande, R.: Stable quotients and the holomorphic anomaly equation. Adv. Math. 332, 349–402 (2018)

  46. Maier, R.S.: On rationally parametrized modular equations. J. Ramanujan Math. Soc. 24(1), 1–73 (2009)

    MathSciNet  MATH  Google Scholar 

  47. Maier, R.S.: Nonlinear differential equations satisfied by certain classical modular forms. Manuscr. Math. 134(1–2), 1–42 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mohri, K.: Exceptional string: instanton expansions and Seiberg–Witten curve. Rev. Math. Phys. 14, 913–975 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  49. Rankin, R.A.: Modular Forms and Functions. Cambridge University Press, Cambridge (1977)

    Book  MATH  Google Scholar 

  50. Schoeneberg, B.: Elliptic Modular Functions: An Introduction, vol. 203. Springer, Berlin (2012)

    MATH  Google Scholar 

  51. Silverman, J.H.: The Arithmetic of Elliptic Curves, vol. 106. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  52. Stienstra, J.: Resonant hypergeometric systems and mirror symmetry. In: Proceedings of the Taniguchi Symposium 1997. Integrable Systems and Algebraic Geometry. World Scientific (1998)

  53. Stienstra, J.: Mahler measure variations, Eisenstein series and instanton expansions. In: Mirror Symmetry V, AMS/IP Studies in Advanced Mathematics, vol. 38, pp. 139–150. American Mathematical Society, Providence, RI (2006)

  54. Takhtajan, L.A.: Free bosons and tau-functions for compact Riemann surfaces and closed smooth Jordan curves. Current correlation functions. Lett. Math. Phys. 56(3), 181–228 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  55. Tyurin, A.N.: On periods of quadratic differentials. Russian Math. Surv. 33(6), 169–221 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Witten, E.: Phases of \(N = 2\) theories in two dimensions. Nucl. Phys. B 403, 159–222 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Yamaguchi, S., Yau, S.-T.: Topological string partition functions as polynomials. JHEP 0407, 047 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  58. Zagier, D.: Elliptic modular forms and their applications. In: The 1-2-3 of Modular Forms, pp. 1–103. Universitext, Springer, Berlin (2008)

  59. Zhou, J: Arithmetic Properties of Moduli Spaces and Topological String Partition Functions of Some Calabi-Yau Threefolds. Harvard Ph.D. Thesis (2014)

Download references

Acknowledgements

B. F. would like to thank Chiu-Chu Melissa Liu and Zhengyu Zong for enlightening discussion. J. Z. would like to thank Murad Alim, Florian Beck, Kathrin Bringmann, Xiaoheng Jerry Wang and Baosen Wu for useful discussions. The authors are very grateful to the anonymous referee for the great improvement of this article. Y. R. is partially supported by NSF Grant DMS 1405245 and NSF FRG Grant DMS 1159265. Y. Z. is supported by China Scholarship Council Grant No. 201706010026. J. Z. ’s work was done while he was a postdoc at the University of Cologne and was partially supported by German Research Foundation Grant CRC/TRR 191.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohan Fang.

Additional information

Communicated by H.- T. Yau

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Some Explicit Formulae

Some Explicit Formulae

Some explicit formulae for the disk potential, annulus potential, \(\omega _{0,3}\), and \(\omega _{1,1}\) for certain special one-parameter families of our four examples are collected in this appendix. The general expressions are displayed below.

  • Disk potential

    $$\begin{aligned} \partial _x{W}=\log y\cdot {1\over x}. \end{aligned}$$
    (A.1)
  • Annulus potential

    $$\begin{aligned} \omega _{0,2}(u_{1},u_{2})=B(u_{1},u_{2})=(\wp (u_{1}-u_{2})+ {\eta }_{1})du_1\boxtimes du_2. \end{aligned}$$
    (A.2)
  • Recursion kernel \(K=d^{-1}S/\Lambda \),

    $$\begin{aligned} S(u_{1},u_{2})= & {} (\wp (u_{1}-u_{2})+\widehat{\eta }_{1}) du_1\boxtimes du_2,\nonumber \\ \Lambda= & {} 2 \sum _{k=0}^{\infty } {1\over 2k+1} \left( {y-y^{*}\over y+y^{*}}\right) ^{2k+1}\partial _{u}x {1\over x} du. \end{aligned}$$
    (A.3)

    Here \(d^{-1}S\) is as defined in (4.15), and the expression \(y^{*}=-y-2h(x)\) in (3.3) is determined from the mirror curve equation as in (3.1) and (3.3).

  • \(\omega _{0,3}\)

    $$\begin{aligned} \omega _{0,3}(u_{1},u_{2},u_{3})= & {} \sum _{r\in R^{\circ }} \left( 2[{1\over \Lambda } ]_{-2}\cdot \prod _{k=1}^{3} (\wp (u_{k}-u_{r})+\eta _{1}) \right) \nonumber \\&\quad du_1\boxtimes du_2\boxtimes du_{3}, \end{aligned}$$
    (A.4)
  • \(\omega _{1,1}\)

    $$\begin{aligned} \omega _{1,1}(u_1)= & {} \sum _{r\in R^{\circ }}\left( {1\over 24}\left[ {1 \over \Lambda }\right] _{-2}\wp ^{(2)}(u_1-u_r)+{{\eta _1}}\left[ {1\over \Lambda }\right] _{-2}\wp (u_1-u_r)\right. \nonumber \\&\quad \left. +{1\over 4}\left[ {1\over \Lambda }\right] _{0}\wp (u_1-u_r) \right) du_1. \end{aligned}$$
    (A.5)

In the above we have used the notation \([-]_{n}\) to denote the degree n Laurent coefficient at the corresponding point in consideration. Direct computations show that

$$\begin{aligned} \left[ {1\over \Lambda }\right] _{-2}= {1\over [ \Lambda ]_{2}}={1\over a_{0}} , \quad \left[ {1\over \Lambda }\right] _{0}= -{a_{2}\over a_{0}^{2}}+{a_{1}^{2}\over a_{0}^{3}}, \end{aligned}$$
(A.6)

where

$$\begin{aligned} a_{0}= & {} {2 [x']_{1} [y-y^{*}]_{1}\over [x]_{0} [y+y^{*}]_{0} },\end{aligned}$$
(A.7)
$$\begin{aligned} a_{1}= & {} {2 [x']_{1} [y-y^{*}]_{1}} \cdot - { [x]_{0} [y+y^{*}]_{1}+ [x]_{1} [y+y^{*}]_{0} \over [x]_{0}^2 [y+y^{*}]^2_{0} }\end{aligned}$$
(A.8)
$$\begin{aligned}&+\,2{ [x']_{1} [y-y^{*}]_{2}+ [x']_{2} [y-y^{*}]_{1} \over [x]_{0} [y+y^{*}]_{0} } ,\end{aligned}$$
(A.9)
$$\begin{aligned} a_{2}= & {} {2 [x']_{1} [y-y^{*}]^{3}_{1}\over 3 [x]_{0} [(y+y^{*})^3]_{0} } \end{aligned}$$
(A.10)
$$\begin{aligned}&+\,{2 [x']_{1} [y-y^{*}]_{3}+2 [x']_{2} [y-y^{*}]_{2}+2 [x']_{3} [y-y^{*}]_{1}\over [x]_{0} [(y+y^{*})]_{0}}\end{aligned}$$
(A.11)
$$\begin{aligned}&- { 2 ( [x']_{1} [y-y^{*}]_{2} + [x']_{2} [y-y^{*}]_{1}) ( [x]_{0} [y+y^{*}]_{1} +[x]_{1} [y+y^{*}]_{0}) \over [x]_{0}^2 [(y+y^{*})]_{0}^2 } \qquad \end{aligned}$$
(A.12)
$$\begin{aligned}&\quad + {2 ( [x']_{1} [y-y^{*}]_{1}) ( [x]_{2} [y+y^{*}]_{0} +[x]_{1} [y+y^{*}]_{1}+[x]_{0} [y+y^{*}]_{2}) \over [x]_{0}^2 [(y+y^{*})]_{0}^2 } \qquad \end{aligned}$$
(A.13)
$$\begin{aligned}&\quad - {2 ( [x']_{1} [y-y^{*}]_{1}) ( [x]_{1} [y+y^{*}]_{0} +[x]_{1} [y+y^{*}]_{0})^2 \over [x]_{0}^3 [(y+y^{*})]_{0}^3 }. \end{aligned}$$
(A.14)

1.1 \(K_{{\mathbb {P}}^{2}}\)

The affine part of the mirror curve given in Example 2.1 is equivalent to

$$\begin{aligned} y^{2}+(x+1)y+q_{1}x^{3}=0, \quad q_{1}=(-3\phi )^{-3}. \end{aligned}$$
(A.15)

The set of finite ramification points is \(R^{\circ }=\{{1\over 2}, {\tau \over 2}, {1+\tau \over 2}\}\). Uniformization gives

$$\begin{aligned} x=-3(-4)^{1\over 3}\kappa ^{2} \phi \wp (u)-{9\over 4}\phi ^{3}, \quad y=\kappa ^{3}\wp '(u)-{1+x\over 2} \end{aligned}$$
(A.16)

with

$$\begin{aligned} \phi (\tau )=\Theta _{A_{2}}(2\tau ) {\eta (3\tau ) \over \eta (\tau )^{3} }, \quad \kappa =\zeta _{6}\,2^{-{4\over 3}} 3^{1\over 2} \pi ^{-1}{\eta (3\tau )\over \eta (\tau )^{3}}. \end{aligned}$$
(A.17)

1.2 \(K_{{\mathbb {F}}_1}\)

The affine part of the mirror curve given in Example 2.4 is

$$\begin{aligned} y^2+y+xy+q_1x+q_2x^2y=0. \end{aligned}$$
(A.18)

The set of finite ramification points is \(R^{\circ }=\{0, {1\over 2}, {\tau \over 2}, {1+\tau \over 2}\}\). The uniformization is given by the iteration of the following changes of coordinates (for some \(\epsilon \) and \(\kappa \))

$$\begin{aligned} \alpha= & {} 4^{1\over 3}\kappa ^{2} \wp (u+\epsilon )-{1\over 3}\left( {1\over 4}+{1\over 2}q_2\right) ,\nonumber \\ \beta= & {} \kappa ^{3}\wp '(u+\epsilon )-\left( \left( {1\over 2}-q_1\right) \alpha +{1\over 4}{q_2})\right) , \end{aligned}$$
(A.19)
$$\begin{aligned} x= & {} \beta ^{-1}{\left( \alpha +{q_2\over 2}-q_1^2+q_1\right) },\nonumber \\ y= & {} -{1\over 2}(1+x+q_2x^2)-{1\over 2}+x\left( x\alpha -\left( {1\over 2}-q_1 \right) \right) . \end{aligned}$$
(A.20)

Taking the special one-parameter family \(q_{1}=1,q_{2}=s\), we have

$$\begin{aligned} s=2^{-8} {\eta ^{8}(\tau )\over \eta ^{8}(4\tau )}, \quad \kappa =2^{-{13\over 3}}\pi ^{-1} {\eta (2\tau )^2\over \eta (4\tau )^4} . \end{aligned}$$
(A.21)

1.3 \(K_{{\mathbb {P}}^{1}\times {\mathbb {P}}^{1}}\)

Then affine part of the mirror curve given in Example 2.2 is equivalent to

$$\begin{aligned} y^{2}+(1+x+q_{1}x^2) y+q_{2}x^{2}=0. \end{aligned}$$
(A.22)

The set of finite ramification points is \(R^{\circ }=\{0, {1\over 2}, {\tau \over 2}, {1+\tau \over 2}\}\). The uniformization is given by the iteration of the following changes of coordinates (for some \(\epsilon \) and \(\kappa \))

$$\begin{aligned} \alpha= & {} 2^{2\over 3}\kappa ^{2} \wp (u+\epsilon )+{1\over 12} (-1-2q_{1}+4q_{2}),\nonumber \\ \beta= & {} \kappa ^{3} \wp '(u+\epsilon )- {1\over 2} \left( \alpha +{1\over 2}q_{1}\right) , \end{aligned}$$
(A.23)
$$\begin{aligned} x= & {} \beta ^{-1}\left( 2^{2\over 3}\kappa ^{2} \wp (u+\epsilon ) +{1\over 6} (1+2q_{1}-4q_{2})\right) ,\nonumber \\ y= & {} -{1\over 2}+ x \left( \alpha x -{1\over 2}\right) - {1\over 2} (1+x +q_{1} x^2). \end{aligned}$$
(A.24)

Taking the special one-parameter subfamily \(q_{1}=q_{2}=s\), we have

$$\begin{aligned} s=-2^{-8} {\eta ^{8}(\tau )\over \eta ^{8}(4\tau )}, \quad \kappa =2^{-{7\over 3}}\pi ^{-1}\theta _{2}^{-2}(2\tau ). \end{aligned}$$
(A.25)

1.4 \(K_{W{\mathbb {P}}[1,1,2]}\)

The affine part of the mirror curve given in Example 2.3 is equivalent to

$$\begin{aligned} y^2+{x^{4}}+y+ b_{4} x^{2}y+ b_{0} xy=0, \quad q_{1}=b_{4}b_{0}^{-4}, q_{2}=b_{0}^{-2}. \end{aligned}$$
(A.26)

The set of finite ramification points is \(R^{\circ }=\{0, {1\over 2}, {\tau \over 2}, {1+\tau \over 2}\}\). The following combination is independent of the specialization to an one-parameter subfamily

$$\begin{aligned} (b_{0}^2-4b_{4})^2 = 64 { (\theta _{2}^{4}(2\tau ) +\theta _{3}^{4} (2\tau ))^{2} \over \theta _{4}^{8}(2\tau )}, \end{aligned}$$
(A.27)

up to an \(SL_{2}({\mathbb {Z}})\)-transform on \(\tau \).

The uniformization is given by the iteration of the following changes of coordinates (for some \(\epsilon \) and \(\kappa \))

$$\begin{aligned} \alpha= & {} 2^{3\over 2}\kappa ^{2} \wp (u+\epsilon ) -{1\over 12} (b_{0}^{2}+2 b_{4}),\nonumber \\ \beta= & {} \kappa ^{3} \wp '(u+\epsilon )-{1\over 2}b_{0} \left( \alpha +{1\over 2}b_{4}\right) , \end{aligned}$$
(A.28)
$$\begin{aligned} x= & {} \beta ^{-1}\left( 2^{3\over 2}\kappa ^{2} \wp (u+\epsilon ) +{1\over 3} (b_{4}-{1\over 4}b_{0}^{2}) \right) ,\nonumber \\ y= & {} -{1\over 2} +x \left( \alpha x-{1\over 2}b_{0}\right) -{1\over 2} (1+b_{0}x+b_{4}x^2). \end{aligned}$$
(A.29)

Taking the special one-parameter subfamily \((q_{1},q_{2})=(0,s)\) that is \(b_{4}=0\), we have

$$\begin{aligned} s=64^{-1} { \theta _{4}^{8}(2\tau ) \over (\theta _{2}^{4}(2\tau ) +\theta _{3}^{4} (2\tau ))^{2} }, \quad \kappa =2^{-{1\over 3}} \pi ^{-1} \theta _{4}^{-2} (2\tau ). \end{aligned}$$
(A.30)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, B., Ruan, Y., Zhang, Y. et al. Open Gromov–Witten Theory of \(K_{{\mathbb {P}}^2}, K_{{{\mathbb {P}}^1}\times {{\mathbb {P}}^1}}, K_{W{\mathbb {P}}\left[ 1,1,2\right] }, K_{{{\mathbb {F}}}_1}\) and Jacobi Forms. Commun. Math. Phys. 369, 675–719 (2019). https://doi.org/10.1007/s00220-019-03440-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03440-5

Navigation