Skip to main content
Log in

A New Proof of Harish-Chandra’s Integral Formula

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a new proof of Harish-Chandra’s formula (Harish-Chandra in Am J Math 79:87–120, 1957)

$$\Pi(h_1) \Pi(h_2) \int_G e^{\langle {\mathrm{Ad}}_g h_1,h_2 \rangle} dg = \frac{ [ [ \Pi, \Pi ] ] }{|W|} \sum_{w \in W}\epsilon(w) e^{\langle w(h_1),h_2 \rangle},$$

where G is a compact, connected, semisimple Lie group, dg is normalized Haar measure, h1 and h2 lie in a Cartan subalgebra of the complexified Lie algebra, \({\Pi}\) is the discriminant, \({\langle \cdot, \cdot \rangle}\) is the Killing form, \({[ [ \cdot, \cdot ] ]}\) is an inner product that extends the Killing form to polynomials, W is a Weyl group, and \({\epsilon(w)}\) is the sign of \({w \in W}\). The proof in this paper follows from a relationship between heat flow on a semisimple Lie algebra and heat flow on a Cartan subalgebra, extending methods developed by Itzykson and Zuber (J Math Phys 21:411–421, 1980) for the case of an integral over the unitary group U(N). The heat-flow proof allows a systematic approach to studying the asymptotics of orbital integrals over a wide class of groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harish-Chandra.: Differential operators on a semisimple Lie algebra. Am. J. Math. 79(1), 87–120 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  2. Itzykson C., Zuber J.-B.: The planar approximation. II. J. Math. Phys. 21(3), 411–421 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Goulden I.P., Guay-Paquet M., Novak J.: Monotone Hurwitz numbers and the HCIZ integral. Ann. Math. Blaise Pascal 21, 71–89 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. McSwiggen, C.: The Harish-Chandra integral. arXiv:1806.11155 (2018). Accessed 28 June 2018

  5. Forrester, P.J., Ipsen, J.R., Liu, D.-Z., Zhang, L.: Orthogonal and symplectic Harish-Chandra integrals and matrix product ensembles. arXiv:1711.10691 (2017). Accessed 5 Dec 2017

  6. Matytsin A.: On the large-N limit of the Itzykson–Zuber integral. Nucl. Phys. B 411, 805–820 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Guionnet A., Zeitouni O.: Large deviations asymptotics for spherical integrals. J. Funct. Anal. 188(2), 461–515 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guionnet A.: First order asymptotics of matrix integrals; a rigorous approach towards the understanding of matrix models. Commun. Math. Phys. 244(3), 527–569 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bun J., Bouchaud J.P., Majumdar S.N., Potters M.: Instanton approach to large N Harish-Chandra–Itzykson–Zuber integrals. Phys. Rev. Lett. 113, 070201 (2014)

    Article  ADS  Google Scholar 

  10. Menon, G.: The complex Burgers’ equation, the HCIZ integral and the Calogero-Moser system. http://www.dam.brown.edu/people/menon/talks/cmsa.pdf (2017). Accessed 8 Dec 2017

  11. Levasseur T., Stafford J.: Invariant differential operators and a homomorphism of Harish-Chandra. J. Am. Math. Soc. 8, 365–372 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Etingof, P.: Lectures on Calogero-Moser systems. arXiv:math/0606233 (2006). Accessed 10 Dec 2017

  13. Grabiner, D.J.: Brownian motion in a Weyl Chamber, non-colliding particles, and random matrices. arXiv:math/9708207 (1997). Accessed 10 Dec 2017

  14. Duistermaat J.J., Heckman G.J.: On the variation in the cohomology of the symplectic form of the reduced phase space. Invent. Math. 69(2), 259–268 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Helgason S.: Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions. Academic Press, Orlando (1984)

    MATH  Google Scholar 

  16. Atiyah M.F., Bott R.: The moment map and equivariant cohomology. Topology 23(1), 1–28 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kirillov A.A.: Lectures on the Orbit Method. American Mathematical Society, Providence (2004)

    Book  MATH  Google Scholar 

  18. Bump D.: Lie Groups. Springer, New York (2004)

    Book  MATH  Google Scholar 

  19. Kirillov A.A.: The characters of unitary representations of Lie groups. Funkc. Anal. i Prilozhen. 2(2), 40–55 (1968)

    MathSciNet  Google Scholar 

  20. Kirillov A.A.: The characters of unitary representations of Lie groups. Funct. Anal. Appl. 2(2), 133–146 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rossmann W.: Kirillov’s character formula for reductive Lie groups. Invent. Math. 48(3), 207–220 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Vergne M.: On Rossmann’s character formula for discrete series. Invent. Math. 54, 11–14 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Ziegler F.: On the Kostant convexity theorem. Proc. Am. Math. Soc. 115(4), 1111–1113 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The author acknowledges partial support from NSF Grants DMS 1714187 and DMS 1148284. The author also thanks Govind Menon, Jean-Bernard Zuber, Pierre Le Doussal, Peter Forrester, Sigurdur Helgason and Boris Hanin for helpful comments and conversations, as well as the Park City Mathematics Institute, supported by NSF Grant DMS 1441467, for the opportunity to participate in the 2017 summer school on random matrices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin McSwiggen.

Additional information

Communicated by P. Deift

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McSwiggen, C. A New Proof of Harish-Chandra’s Integral Formula. Commun. Math. Phys. 365, 239–253 (2019). https://doi.org/10.1007/s00220-018-3259-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3259-9

Navigation