Skip to main content
Log in

Entropic Repulsion and Lack of the g-Measure Property for Dyson Models

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider Dyson models, Ising models with slow polynomial decay, at low temperature and show that its Gibbs measures deep in the phase transition region are not g-measures. The main ingredient in the proof is the occurrence of an entropic repulsion effect, which follows from the mesoscopic stability of a (single-point) interface for these long-range models in the phase transition region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman M., Chayes J., Chayes L., Newman C.: Discontinuity of the magnetization in the one-dimensional \({1/| x-y |^2}\) percolation, ising and potts models. J. Stat. Phys. 50(1/2), 1–40 (1988)

    Article  ADS  MATH  Google Scholar 

  2. Berbee H.: Chains with infinite connections: uniqueness and Markov representation. Prob. Theory Rel. Fields 76, 243–253 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Berger N., Hoffman C., Sidoravicius V.: Nonuniqueness for specifications in \({l^{2+ \epsilon}}\). Ergod. Theory Dyn. Syst. 38(4), 1342–1352 (2018)

    Article  MATH  Google Scholar 

  4. Berghout, S., Fernández, R., Verbitskiy, E.: On the relation between Gibbs and g-measures. Ergod. Theory Dyn. Syst. (2018). https://doi.org/10.1017/etds.2018.13

  5. Bissacot, R., Endo, E.O., van Enter, A.C.D., Kimura, B., Ruszel, W.M.: Contour methods for long-range Ising models: weakening nearest-neighbor interactions and adding decaying fields. J. Ann. Henri Poincaré 19(8), 2557–2574 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. 2nd Edition (Chazottes, J.-R. ed.), Springer Lecture Notes in Mathematics, vol. 470 (2008)

  7. Bramson M., Kalikow S.: Non-uniqueness in g-functions. Isr. J. Math. 84, 153–160 (1993)

    Article  MATH  Google Scholar 

  8. Bricmont J., Lebowitz J., Pfister C.-E.: On the equivalence of boundary conditions. J. Stat. Phys. 21(5), 573–582 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  9. Brown G., Dooley A.H.: Odometer actions on g-measures. Ergod. Theory Dyn. Syst. 11, 279–307 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brown G., Dooley A.H.: On G-measures and product measures. Ergod. Theory Dyn. Syst. 18, 95–107 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cassandro M., Ferrari P.A., Merola I., Presutti E.: Geometry of contours and Peierls estimates in d = 1 Ising models with long range interactions. J. Math. Phys. 46(5), 0533305 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Cassandro M., Merola I., Picco P.: Phase separation for the long range one-dimensional Ising model. J. Stat. Phys. 167(2), 351–382 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Cassandro M., Merola I., Picco P., Rozikov U.: One-dimensional ising models with long range interactions: cluster expansion, phase-separating point. Commun. Math. Phys. 327, 951–991 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Cassandro M., Orlandi E., Picco P.: Phase transition in the 1D random field Ising model with long range interaction. Commun. Math. Phys. 288, 731–744 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Cioletti L., Lopes A.O.: Interactions, specifications, DLR probabilities and the ruelle operator in the one-dimensional lattice. Discrete Contin. Dyn. Syst. A 37, 6139 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cioletti L., Lopes A.O.: Phase transitions in one-dimensional translation invariant systems: a Ruelle operator approach. J. Stat. Phys. 159(6), 1424–1455 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Cioletti, L., Lopes, A.O.: Ruelle operator for continuous potentials and DLR-Gibbs measures. Preprint (2016). arXiv:1608.03881v2

  18. Dias J.C.A., Friedli S.: Uniqueness vs. non-uniqueness for complete connections with modified majority rules. Prob. Theory Rel. Fields 164, 893–929 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dobrushin R.L.: The description of a random field by means of conditional probabilities and conditions of its regularity. Theory Prob. Appl. 13, 197–224 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dyson F.J.: Existence of a phase transition in a one-dimensional Ising ferromagnet. Commun. Math. Phys. 12, 91–107 (1969)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Dyson F.J.: An Ising ferromagnet with discontinuous long-range order. Commun. Math. Phys. 21, 269–283 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  22. Dyson, F.J.: Existence and nature of phase transition in one-dimensional Ising ferromagnets. SIAM-AMS Proceedings. Vol. V, pp. 1–12 (1972)

  23. van Enter A.C.D., Fernández R., Sokal A.D.: Regularity properties and pathologies of position-space renormalization group transformations: scope and limitations of Gibbsian theory. J. Stat. Phys. 72, 879–1167 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. van Enter A.C.D., Le Ny A.: Decimation of the Dyson-Ising ferromagnet. Stoch. Process. Appl. 127(11), 3776–3791 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fernández, R.: Gibbsianness and non-Gibbsianness in lattice random fields. In: Bovier, A., van Enter, A., den Hollander, F., Dunlop, F., (eds.) Mathematical Statistical Physics. Proceedings of the 83rd Les Houches Summer School (July 2005). Elsevier (2006)

  26. Fernández R., Maillard G.: Chains with complete connections and one-dimensional Gibbs measures. Electron. J. Prob. 9, 145–176 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fernández R., Maillard G.: Chains with complete connections: general theory, uniqueness, loss of memory and mixing properties. J. Stat. Phys. 118, 555–588 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Fernández R., Maillard G.: Construction of a specification from its singleton part. ALEA 2, 297–315 (2006)

    MathSciNet  MATH  Google Scholar 

  29. Fernández S., Maillard Gallo.G.: Regular g-measures are not always Gibbsian. Electron. C. Prob. 16, 732–740 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fernández R., Pfister C.-E.: Global specifications and non-quasilocality of projections of Gibbs measures. Ann. Prob. 25(3), 1284–1315 (1997)

    Article  MATH  Google Scholar 

  31. Föllmer H.: On the global markov property. In: Streit, L. (ed.) Quantum Fields-Algebras, Processes, pp. 293–302. Springer, New York (1980)

    Chapter  Google Scholar 

  32. Friedli S.: A note on the Bramson–Kalikow process. Braz. J. Prob. Stat. 29, 427–442 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Friedli S., Velenik Y.: Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction. Cambridge University Press, Cambridge (2017)

    Book  MATH  Google Scholar 

  34. Fröhlich J., Israel R.B., Lieb E.H., Simon B.: Phase transitions and reflection positivity. I. General theory and long range lattice models. Commun. Math. Phys. 62, 1–34 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  35. Fröhlich J., Spencer T.: The phase transition in the one-dimensional Ising model with 1/r 2 interaction energy. Commun. Math. Phys. 84, 87–101 (1982)

    Article  ADS  MATH  Google Scholar 

  36. Gallesco C., Gallo S., Takahashi D.Y.: Dynamic uniqueness for stochastic chains with unbounded memory. Stoch. Process. Appl. 128(2), 689–706 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gallo S., Paccaut F.: Non-regular g-measures. Nonlinearity 26, 763–776 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Galves A., Löcherbach E.: Stochastic chains with memory of variable length. Rissanen Festschr. (Grünwald et al. eds). TISCP Ser. 38, 117–133 (2008)

    MATH  Google Scholar 

  39. Georgii, H.-O.: Gibbs Measures and Phase Transitions. de Gruyter (1988–2011)

  40. Giacomin G.: Random Polymer Models. Imperial College Press, London (2007)

    Book  MATH  Google Scholar 

  41. Goldstein S.: A note on specifications. Z. Wahrsch. Verw. Geb. 46, 45–51 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  42. Goldstein S.: Remarks on the global Markov property. Commun. Math. Phys. 74, 223–234 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Harris T.E.: On chains of infinite order. Pac. J. Math. 5, 707–724 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hulse P.: On the ergodic properties of Gibbs states for attractive specifications. J. Lond. Math. Soc. (2) 43(1), 119–124 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  45. Hulse P.: An example of non-unique g-measures. Ergod. Theory Dyn. Syst. 26, 439–445 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. Imbrie J.Z., Newman C.M.: An intermediate phase with slow decay of correlations in one dimensional \({\frac{1}{|x-y|^2}}\) percolation, Ising and Potts models. Commun. Math. Phys. 118, 303–336 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  47. Israel R.B.: Convexity in the Theory of Lattice Gases. Princeton University Press, Princeton (1979)

    MATH  Google Scholar 

  48. Israel R.B.: Some examples concerning the global Markov property. Commun. Math. Phys. 105, 669–673 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Johansson A., Pollicott A., Pollicott M.: Unique Bernoulli g-measures. J. Eur. Math. Soc. 14, 1599–1615 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Johansson, A., Öberg, A., Pollicott, M.: Phase transitions in long-range ising models and an optimal condition for factors of g-measures. Ergod. Theory Dyn. Syst. (to appear) (2017)

  51. Johansson K.: Condensation of a one-dimensional lattice gas. Commun. Math. Phys. 141, 41–61 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Johansson K.: On the separation of phases in one-dimensional gases. Commun. Math. Phys. 169, 521–561 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Kac M., Thompson C.J.: Critical behaviour of several lattice models with long-range interaction. J. Math. Phys. 10, 1373–1386 (1969)

    Article  ADS  MATH  Google Scholar 

  54. Kalikow S.: Random Markov processes and uniform martingales. Isr. J. Math. 71, 33–54 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  55. Keane M.: Strongly mixing g-measures. Invent. Math. 16, 309–324 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Kozlov O.: Gibbs description of a system of random variables. Probl. Inf. Transm. 10, 258–265 (1974)

    MathSciNet  Google Scholar 

  57. Lanford O.E., Ruelle D.: Observables at infinity and states with short range correlations in statistical mechanics. Commun. Math. Phys. 13, 194–215 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  58. Lee T.D., Yang C.N.: Statistical theory of equations of state and phase transitions II. Lattice Gas Ising Model. Phys. Rev. 87, 404–409 (1952)

    MATH  Google Scholar 

  59. Littin J., Picco P.: Quasi-additive estimates on the Hamiltonian for the one-dimensional long range Ising model. J. Math. Phys. 58(7), 073301 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Maes C., Redig F., Van Moffaert A.: Almost Gibbsian versus weakly Gibbsian measures. Stoch. Proc. Appl. 79(1), 1–15 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  61. Pfister C.-E., Velenik Y.: Mathematical theory of the wetting phenomenon in the 2D Ising model. Helv. Phys. Acta 69, 949–973 (1996)

    MathSciNet  MATH  Google Scholar 

  62. Preston, C.: Construction of specifications. In: Streit, L. (ed.) Quantum Fields-Algebras, Processes (Bielefeld symposium 1978), pp. 269–282. Springer, Wien (1980)

    Chapter  Google Scholar 

  63. Rissanen J.A.: Universal data compression system. IEEE Trans. Inf. Theory 29(5), 656–664 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  64. Ruelle D.: Thermodynamic Formalism, 2nd Edn. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  65. Sokal A.D.: Existence of compatible families of proper regular conditional probabilities. Z. Wahrsch. verw. Geb 56, 537–548 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  66. Sinai, Ya.G.: Gibbs measures in ergodic theory. Russ. Math. Surv. 27(4), 21–69 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Sullivan W.G.: Potentials for almost Markovian random fields. Commun. Math. Phys. 33, 61–74 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Verbitskiy E.: On factors of g-measures. Ind. Math. 22, 315–329 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  69. Walters P.: A natural space of functions for the Ruelle operator theorem. Ergod. Theory Dyn. Syst. 27(4), 1323–1348 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  70. von Weizsäcker, H.: A simple example concerning the global Markov property of lattice random fields. In: 8th Winter School on Abstract Analysis (1980)

Download references

Acknowledgements

We thank the referees for a number of helpful remarks and suggestions. We also thank S. Bethuelsen, M. Cassandro, L. Cioletti, D. Conache, R. Fernández, S. Gallo, G. Iacobelli, G. Maillard, F. Paccaut, P. Picco, and E. Verbitskiy for various helpful conversations over the years. We thank Evgeny Verbitskiy for providing us with [4] and Jorge Littin for providing us with [59]. RB is partially supported by the Dutch stochastics cluster STAR, by FAPESP Grants 2011/16265-8, 2016/08518-7 and 2016/25053-8, CNPq Grants 453985/2016-5, 312112/2015-7 and 446658/2014-6. EOE is supported by FAPESP Grants 2014/10637-9 and 2015/14434-8. ALN has benefited from Dutch supports (STAR, EURANDOM, Lorentz Center, TU Delft, RU Groningen) for short research visits to the Netherlands and from Franco-Dutch supports (CNRS, Networks) for a longer research visit at the CNRS UMI Eurandom during the academic year 2017–2018, when this work was achieved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Le Ny.

Additional information

Communicated by H. Duminil-Copin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bissacot, R., Endo, E.O., van Enter, A.C.D. et al. Entropic Repulsion and Lack of the g-Measure Property for Dyson Models. Commun. Math. Phys. 363, 767–788 (2018). https://doi.org/10.1007/s00220-018-3233-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3233-6

Navigation