Skip to main content
Log in

Nonlinear Perturbation of a Noisy Hamiltonian Lattice Field Model: Universality Persistence

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In Bernardin et al. (Arch Ration Mech Anal 220(2):505–542, 2016) it has been proved that a linear Hamiltonian lattice field with two conservation laws, perturbed by a conservative stochastic noise, belongs to the \({\frac32}\)-Lévy/Diffusive universality class in the nonlinear fluctuating theory terminology (Spohn in J Stat Phys 154(5):1191–1227, 2014), i.e. energy superdiffuses like an asymmetric stable \({\frac32}\)-Lévy process and volume diffuses like a Brownian motion. According to this theory this should remain valid at zero tension if the harmonic potential is replaced by an even potential. In this work we consider a quartic anharmonicity and show that the result obtained in the harmonic case persists up to some small critical value of the anharmonicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernardin C., Gonçalves P.: Anomalous fluctuations for a perturbed Hamiltonian system with exponential interactions. Commun. Math. Phys. 325, 291–332 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Bernardin C., Gonçalves P., Jara M.: 3/4-fractional superdiffusion in a system of harmonic oscillators perturbed by a conservative noise. Arch. Ration. Mech. Anal. 220(2), 505–542 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernardin C., Gonçalves P., Jara M., Sasada M., Simon M.: From normal diffusion to super diffusion of energy in the evanescent flip noise limit. J. Stat. Phys. 159(6), 1327–1368 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Bernardin, C., Gonçalves, P., Jara, M., Simon, M.: Interpolation process between standard diffusion and fractional diffusion, Arxiv Preprint: arXiv:1607.07238 (2016), to appear in Annales de l’IHP, Probabilités et Statistiques

  5. Blondel O., Gonçalves P., Simon M.: Convergence to the stochastic Burgers equations from a degenerate stochastic microscopic dynamics. Electron. J. Probab. 21(69), 1–26 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Bernardin C., Stoltz G.: Anomalous diffusion for a class of systems with two conserved quantities. Nonlinearity 25(4), 1099–1133 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Corwin, I.: Macdonald processes,quantum integrable systems and the Kardar-Parisi-Zhang universality class. In: Proceedings of the International Congress of Mathematicians 2014, Seoul

  8. Jara M., Komorowski T., Olla S.: Limit theorems for additive functionals of a Markov chain. Ann. Appl. Probab. 19(6), 2270–2300 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jara M., Komorowski T., Olla S.: Superdiffusion of energy in a chain of harmonic oscillators with noise. Commun. Math. Phys. 339(2), 407–453 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Komorowski, T., Landim, C., Olla. S.: Fluctuations in Markov processes, vol. 345 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer, Heidelberg (2012). Time symmetry and martingale approximation

  11. Lepri, S.: Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer. Lecture Notes in Physics 921 (2016)

  12. Lukkarinen J., Spohn H.: Anomalous energy transport in the FPU-beta chain. Commun. Pure Appl. Math. 61, 1753–1786 (2008)

    Article  MATH  Google Scholar 

  13. Mellet A., Merino-Aceituno S.: Anomalous energy transport in FPU-\({\beta}\) chain. J. Stat. Phys. 160(3), 583–621 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Quastel J., Spohn H.: The one-dimensional KPZ equation and its universality class. J. Stat. Phys. 160(4), 965–984 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Sethuraman S.: Central limit theorems for additive functionals of the simple exclusion process. Ann. Prob. 28, 277–302 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Spohn H.: Nonlinear fluctuating hydrodynamics for anharmonic chains. J. Stat. Phys. 154(5), 1191–1227 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Spohn H., Stoltz G.: Nonlinear fluctuating hydrodynamics in one dimension: the case of two conserved fields. J. Stat. Phys. 160, 861–884 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Acknowledgements

This work benefited from the support of the project EDNHS ANR-14-CE25-0011 of the French National Research Agency (ANR) and of the PHC Pessoa Project 37854WM, and also in part by the International Centre for Theoretical Sciences (ICTS) during a visit for participating in the program Non-equilibrium statistical physics (Code: ICTS/Prog-NESP/2015/10). C.B. thanks the French National Research Agency (ANR) for its support through the Grant ANR-15-CE40-0020-01 (LSD). P.G. thanks FCT/Portugal for support through the project UID/MAT/04459/2013. M.J. thanks CNPq for its support through the Grant 401628/2012-4 and FAPERJ for its support through the Grant JCNE E17/2012. M.J. was partially supported by NWO Gravitation Grant 024.002.003-NETWORKS. M.S. thanks the Labex CEMPI (ANR-11-LABX-0007-01) for its support. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovative programme (Grant Agreement No. 715734).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Bernardin.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardin, C., Gonçalves, P., Jara, M. et al. Nonlinear Perturbation of a Noisy Hamiltonian Lattice Field Model: Universality Persistence. Commun. Math. Phys. 361, 605–659 (2018). https://doi.org/10.1007/s00220-018-3191-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3191-z

Navigation