Skip to main content
Log in

Quadratic Forms and Semiclassical Eigenfunction Hypothesis for Flat Tori

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let Q(X) be any integral primitive positive definite quadratic form in k variables, where \({k\geq4}\), and discriminant D. For any integer n, we give an upper bound on the number of integral solutions of Q(X) = n in terms of n, k, and D. As a corollary, we prove a conjecture of Lester and Rudnick on the small scale equidistribution of almost all functions belonging to any orthonormal basis of a given eigenspace of the Laplacian on the flat torus \({\mathbb{T}^d}\) for \({d\geq 5}\). This conjecture is motivated by the work of Berry [2,3] on the semiclassical eigenfunction hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrianov A.N.: Action of Hecke operator T(p) on theta series. Math. Ann. 247(3), 245–254 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berry, M.: Semiclassical mechanics of regular and irregular motion. In: Chaotic Behavior of Deterministic Systems (Les Houches, 1981), pp. 171–271. North-Holland, Amsterdam, (1983)

  3. Berry M.V.: Regular and irregular semiclassical wave functions. J. Phys. A 10(12), 2083 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Blomer V.: Uniform bounds for Fourier coefficients of theta-series with arithmetic applications. Acta Arith. 114(1), 1–21 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Blomer, V.: Ternary quadratic forms, and sums of three squares with restricted variables. In: Anatomy of Integers, vol. 46 of CRM Proc. Lecture Notes, pp. 1–17. Am. Math. Soc., Providence, RI, (2008)

  6. Blomer V., Michel P.: Hybrid bounds for automorphic forms on ellipsoids over number fields. J. Inst. Math. Jussieu 12(4), 727–758 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Browning T.D., Dietmann R.: On the representation of integers by quadratic forms. Proc. Lond. Math. Soc. 96(2), 389–416 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cassels, J.W.S.: Rational quadratic forms, vol. 13 of London Mathematical Society Monographs. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, (1978)

  9. Colin de Verdière, Y.: Ergodicitéet fonctions propres du laplacien. In: Bony–Sjöstrand–Meyer seminar, 1984–1985, pages Exp. No. 13, 8. École Polytech., Palaiseau, (1985)

  10. Hanke J.: Local densities and explicit bounds for representability by a quadratic form. Duke Math. J. 124(2), 351–388 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hezari, H., Riviere, G.: Quantitative equidistribution properties of toral eigenfunctions. Accepted for publication by J. Spectral Theory, (March 2015)

  12. Iwaniec H.: Fourier coefficients of modular forms of half-integral weight. Invent. Math. 87(2), 385–401 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Iwaniec H., Kowalski E.: Analytic number theory, volume 53 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI (2004)

    Google Scholar 

  14. Kudla S.S., Rallis S.: On the Weil-Siegel formula. J. Reine Angew. Math. 387, 1–68 (1988)

    MathSciNet  MATH  Google Scholar 

  15. Kudla S.S., Rallis S.: On the Weil–Siegel formula. II. The isotropic convergent case. J. Reine Angew. Math. 391, 65–84 (1988)

    MathSciNet  MATH  Google Scholar 

  16. Lester, S., Rudnick, Z.: Small scale equidistribution of eigenfunctions on the torus. Commun. Math. Phys., 350(1), 279–300 (2017)

  17. Marklof J., Rudnick Z.: Almost all eigenfunctions of a rational polygon are uniformly distributed. J. Spectr. Theory 2(1), 107–113 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Petersson H.: über die Entwicklungskoeffizienten der automorphen Formen. Acta Math. 58(1), 169–215 (1932)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schulze-Pillot R.: On explicit versions of tartakovski’s theorem. Archiv der Mathematik 77(2), 129–137 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shnirelman A.I.: Ergodic properties of eigenfunctions. Uspehi Mat. Nauk 29(6), 181–182 (1974)

    MathSciNet  Google Scholar 

  21. Siegel C.L.: über die analytische Theorie der quadratischen Formen. Ann. Math. (2) 36(3), 527–606 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  22. Siegel C.L.: über die analytische Theorie der quadratischen Formen. II. Ann. Math. (2) 37(1), 230–263 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  23. Siegel C.L.: über die analytische Theorie der quadratischen Formen. III. Ann. Math. (2) 38(1), 212–291 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zelditch S.: Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55(4), 919–941 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser T. Sardari.

Additional information

Communicated by J. Marklof

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

T. Sardari, N. Quadratic Forms and Semiclassical Eigenfunction Hypothesis for Flat Tori. Commun. Math. Phys. 358, 895–917 (2018). https://doi.org/10.1007/s00220-017-3044-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3044-1

Navigation