Skip to main content
Log in

A Constructive Approach to Regularity of Lagrangian Trajectories for Incompressible Euler Flow in a Bounded Domain

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The 3D incompressible Euler equations are an important research topic in the mathematical study of fluid dynamics. Not only is the global regularity for smooth initial data an open issue, but the behaviour may also depend on the presence or absence of boundaries. For a good understanding, it is crucial to carry out, besides mathematical studies, high-accuracy and well-resolved numerical exploration. Such studies can be very demanding in computational resources, but recently it has been shown that very substantial gains can be achieved first, by using Cauchy’s Lagrangian formulation of the Euler equations and second, by taking advantage of analyticity results of the Lagrangian trajectories for flows whose initial vorticity is Hölder-continuous. The latter has been known for about 20 years (Serfati in J Math Pures Appl 74:95–104, 1995), but the combination of the two, which makes use of recursion relations among time-Taylor coefficients to obtain constructively the time-Taylor series of the Lagrangian map, has been achieved only recently (Frisch and Zheligovsky in Commun Math Phys 326:499–505, 2014; Podvigina et al. in J Comput Phys 306:320–342, 2016 and references therein). Here we extend this methodology to incompressible Euler flow in an impermeable bounded domain whose boundary may be either analytic or have a regularity between indefinite differentiability and analyticity. Non-constructive regularity results for these cases have already been obtained by Glass et al. (Ann Sci Éc Norm Sup 45:1–51, 2012). Using the invariance of the boundary under the Lagrangian flow, we establish novel recursion relations that include contributions from the boundary. This leads to a constructive proof of time-analyticity of the Lagrangian trajectories with analytic boundaries, which can then be used subsequently for the design of a very high-order Cauchy–Lagrangian method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A.: Sobolev Spaces. Academic Press, London (1975)

    MATH  Google Scholar 

  2. Arnold V.I.: Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16, 319–361 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amrouche C., Bernardi C., Dauge M., Girault V.: Vector potentials in three-dimensional nonsmooth domains. Math. Methods Appl. Sci. 21, 823–864 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bardos C., Benachour S.: Domaine d’analyticité des solutions de l’équation d’Euler dans un ouvert de \({\mathbb{R}^n}\). Ann. Sc. Norm. Super. Pisa Cl. Sci. 4, 647–687 (1977)

    MATH  Google Scholar 

  5. Bardos C., Titi E.: Loss of smoothness and energy conserving rough weak solutions for the 3d Euler equations. Discrete Contin. Dyn. Syst. S 3, 185–197 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benachour S.: Analyticité des solutions périodiques de l’équation d’Euler en trois dimensions. C. R. Acad. Sci. Paris A 283, 107–110 (1976)

    MathSciNet  MATH  Google Scholar 

  7. Bernardeau F., Colombi S., Gaztañaga E., Scoccimarro R.: Large-scale structure of the universe and cosmological perturbation theory. Phys. Rep. 367, 1–248 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Beurling, A.: Quasi-analyticity and general distributions. Lecture Notes, AMS Summer Institute, Stanford (1961)

  9. Bourguignon J.-P., Brézis H.: Remarks on the Euler equation. J. Funct. Anal. 15, 341–363 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buckmaster T., De Lellis C., Isett P., Székelyhidi L.: Anomalous dissipation for 1/5-Hölder Euler flows. Ann. Math. 182, 127–172 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carleman T.: Sur les fonctions quasi-analytiques. Gauthiers Villars, Paris (1926)

    MATH  Google Scholar 

  12. Cartan H.: Théorie élémentaire des fonctions analytiques d’une ou plusieurs variables complexes. Hermann, Paris (1961)

    MATH  Google Scholar 

  13. Cauchy, A.L.: Sur l’état du fluide à une époque quelconque du mouvement. Mémoires extraits des recueils de l’Académie des sciences de l’Institut de France, Théorie de la propagation des ondes à la surface d’un fluide pesant d’une profondeur indéfinie (Extraits des Mémoires présentés par divers savans à l’Académie royale des Sciences de l’Institut de France et imprimés par son ordre. Sciences mathématiques et physiques. Tome I, 1827 Seconde Partie. pp. 33–73 (1827)

  14. Chemin J.-Y.: Régularité de la trajectoire des particules d’un fluide parfait incompressible remplissant l’espace. J. Math. Pures Appl. 71, 407–417 (1992)

    MathSciNet  Google Scholar 

  15. Chemin, J.-Y.: Fluides parfaits incompressibles. Astérisque 230 (1995). (Engl. transl.: J.-Y. Chemin, Perfect Incompressible Fluids, Clarendon press, Oxford, 1998.)

  16. Constantin P., Vicol V., Wu J.: Analyticity of Lagrangian trajectories for well-posed inviscid incompressible fluid models. Adv. Math. 285, 352–393 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Constantin P., Kukavica I., Vicol V.: Contrast between Lagrangian and Eulerian analytic regularity properties of Euler equations. Ann. Inst. Henri Poincaré 33, 1569–1588 (2016). doi:10.1016/j.anihpc.2015.07.002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Constantine G.M., Savits T.H.: A multivariate Faà di Bruno formula with applications. Trans. Am. Math. Soc. 348, 503–520 (1996)

    Article  MATH  Google Scholar 

  19. Delort J.-M.: Estimations fines pour des opérateurs pseudo-différentiels analytiques sur un ouvert à bord de \({\mathbb{R}^n}\), application aux équations d’Euler. Commun. Partial Differ. Eq. 10, 1465–1525 (1985)

    Article  MATH  Google Scholar 

  20. Denjoy A.: Sur les fonctions quasi-analytiques de variable réelle. C. R. Acad. Sci. Paris A 123, 1320–1322 (1921)

    MATH  Google Scholar 

  21. Dutrifoy A.: Precise regularity results for the Euler equations. J. Math. Anal. Appl. 282, 177–200 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ebin D.G., Marsden J.E.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92, 102–163 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  23. Faà di Bruno C.F.: Note sur une nouvelle formule du calcul différentiel. Q. J. Math. 1, 359–360 (1855)

    Google Scholar 

  24. Foias C., Teman R.: Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5, 29–63 (1978)

    MATH  Google Scholar 

  25. Frisch U., Zheligovsky V.: A very smooth ride in a rough sea. Commun. Math. Phys. 326, 499–505 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Frisch U., Villone B.: Cauchy’s almost forgotten Lagrangian formulation of the Euler equation for 3D incompressible flow. Eur. Phys. J. H. 39, 325–351 (2014)

    Article  Google Scholar 

  27. Gamblin P.: Système d’Euler incompressible et régularité microlocale analytique. Ann. Inst. Fourier 44, 1449–1475 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1998)

    MATH  Google Scholar 

  29. Girault V., Raviart P.-A.: Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  30. Glass O., Sueur F., Takahashi T.: Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid. Ann. Sci. Éc. Norm. Super. 45, 1–51 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Gyunter, N.M. [Günther]: Über ein Hauptproblem der Hydrodynamik [On a main problem of hydrodynamics]. Math. Z. 24, 448–499 (1926)

  32. Gyunter, N.M. [Gunther]: La théorie du potentiel et ses applications aux problèmes fondamentaux de la physique mathématique. Gauthier–Villars, Paris (1934). (Engl. transl.: N.M. Gyunter [Günter], Potential theory, and its applications to basic problems of mathematical physics, Frederick Ungar Publ., NY, 1967.)

  33. Gzyl H.: Multidimensional extension of Faà di Bruno’s formula. J. Math. Anal. Appl. 116, 450–455 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hörmander L.: The Analysis of Linear Partial Differential Operators. I. Springer, Berin (1983)

    MATH  Google Scholar 

  35. Isett P.: A proof of Onsager’s conjecture. arXiv:1608.08301 (2016)

  36. Kato T.: On the smoothness of trajectories in incompressible perfect fluids. Contemp. Math. 263, 109–130 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kato T.: Two manuscripts left by late Professor Tosio Kato in his personal computer. In: Tosio Kato’s Method and Principle for Evolution Equations in Mathematical Physics, pp. 260–274 (2001)

  38. Komatsu H.: Ultradistributions. I. Structure theorems and a characterization. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20, 25–105 (1973)

    MathSciNet  MATH  Google Scholar 

  39. Krantz S.G., Parks H.R.: A Primer of Real Analytic Functions. Birkhaüser, Basel (2002)

    Book  MATH  Google Scholar 

  40. Kriegl A., Michor P.W., Rainer A.: The convenient setting for non-quasianalytic Denjoy–Carleman differentiable mappings. J. Funct. Anal. 256, 3510–3544 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kriegl A., Michor P.W., Rainer A.: The convenient setting for quasianalytic Denjoy–Carleman differentiable mappings. J. Funct. Anal. 261, 1799–1834 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kriegl A., Michor P.W., Rainer A.: The convenient setting for Denjoy–Carleman differentiable mappings of Beurling and Roumieu type. Rev. Mat. Complut. 28, 549–597 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kukavica I., Vicol V.: On the radius of analyticity of solutions to the three-dimensional Euler equations. Proc. Am. Math. Soc. 137, 669–677 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kukavica I., Vicol V.: On the analyticity and Gevrey-class regularity up to the boundary for the Euler equations. Nonlinearity 24, 765–796 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Kukavica I., Vicol V.: The domain of analyticity of solutions to the three-dimensional Euler equations in a half-plane. Dis. Contin. Dyn. Syst. A 29, 285–303 (2011)

    MATH  Google Scholar 

  46. Ladyzhenskaya O., Uraltseva N.: Linear and Quasilinear Elliptic Equations. Academic Press, London (1968)

    Google Scholar 

  47. Levermore D., Oliver M.: Analyticity of solutions for a generalized Euler equation. J. Differ. Equ. 133, 321–339 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Lichtenstein L.: Über einige Existenzprobleme der Hydrodynamik [On some existence problems of hydrodynamics]. Math. Z. 23, 196–323 (1927)

    Article  MATH  Google Scholar 

  49. Lichtenstein L.: Grundlagen der Hydromechanik [Foundations of Hydromechanics]. Springer, Berlin (1929)

    MATH  Google Scholar 

  50. Lions J.-L., Magenes E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  51. Lions J.-L., Magenes E.: Non-homogeneous Boundary Value Problems and Applications, vol. III. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  52. Majda A., Bertozzi E.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  53. Mandelbrojt, S.: Analytic functions and classes of infinitely differentiable functions. Lecture Notes at the Rice Institute (1942)

  54. Miranda C.: Partial Differential Equations of Elliptic Type. Springer, Berlin (1970)

    Book  MATH  Google Scholar 

  55. Nardi G.: Schauder Estimate for Solutions of Poisson’s Equation with Neumann Boundary Condition. L’enseign. Math. 60, 421–435 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Onsager, L.: Statistical hydrodynamics. Nuovo Cimento (9) 6(2), 279–287 (1949)

  57. Pauls W., Frisch U.: A Borel transform method for locating singularities of Taylor and Fourier series. J. Stat. Phys. 127, 1095–1119 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Podvigina O., Zheligovsky V., Frisch U.: The Cauchy–Lagrangian method for numerical analysis of Euler flow. J. Comput. Phys. 306, 320–342 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Rainer A., Schindl G.: Composition in ultradifferentiable classes. Stud. Math. 224, 97–131 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  60. Rainer, A., Schindl, G.: Equivalence of stability properties for ultradifferentiable function classes. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. 110(1), 17–32 (2016)

  61. Rampf C., Villone B., Frisch U.: How smooth are particle trajectories in a \({\Lambda}\) CDM Universe?. MNRAS 452, 1421–1436 (2015)

    Article  ADS  Google Scholar 

  62. Roumieu, C.: Ultra-distributions définies sur \({\mathbb{R}^n}\) et sur certaines classes de variétés différentiables. J. Anal. Math. 10, 153–192 (1962/1963)

  63. Rudin W.: Real and complex analysis. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  64. Serfati, P.: Etude mathématique de flammes infiniment minces en combustion. Résultats de structure et de régularité pour l’équation d’Euler incompressible, Ph.D. thesis, Université Paris 6 (1992)

  65. Serfati P.: Equation d’Euler et holomorphies à faible régularité spatiale. C. R. Acad. Sci. Paris I 320, 175–180 (1994)

    Google Scholar 

  66. Serfati P.: Structures holomorphes à faible régularité spatiale en mécanique des fluides. J. Math. Pures Appl. 74, 95–104 (1995)

    MathSciNet  Google Scholar 

  67. Shnirelman, A.: On the analyticity of particle trajectories in the ideal incompressible fluid. arXiv preprint: arXiv:1205.5837 (2012)

  68. Thilliez V.: On quasianalytic local rings. Expo. Math. 26, 1–23 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  69. Zheligovsky V., Frisch U.: Time-analyticity of Lagrangian particle trajectories in ideal fluid flow. J. Fluid Mech. 749, 404–430 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Zheligovsky V.: A priori bounds for Gevrey–Sobolev norms of space-periodic three-dimensional solutions to equations of hydrodynamic type. Adv. Differ. Equ. 16, 955–976 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uriel Frisch.

Additional information

Communicated by L. Caffarelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besse, N., Frisch, U. A Constructive Approach to Regularity of Lagrangian Trajectories for Incompressible Euler Flow in a Bounded Domain. Commun. Math. Phys. 351, 689–707 (2017). https://doi.org/10.1007/s00220-016-2816-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2816-3

Navigation