Communications in Mathematical Physics

, Volume 349, Issue 1, pp 329–360 | Cite as

Superscars for Arithmetic Toral Point Scatterers

  • Pär Kurlberg
  • Lior RosenzweigEmail author
Open Access


We investigate eigenfunctions of the Laplacian perturbed by a delta potential on the standard tori \({\mathbb{R}^d/2\pi\mathbb{Z}^d}\) in dimensions \({d = 2,3}\). Despite quantum ergodicity holding for the set of “new” eigenfunctions we show that superscars occur—there is phase space localization along families of closed orbits, in the sense that some semiclassical measures contain a finite number of Lagrangian components of the form \({c_{i} \cdot dx\delta({\xi}-{\xi}_{i})}\), for \({c_{i} > 0}\) uniformly bounded from below. In particular, for both \({d = 2}\) and \({d = 3}\), eigenfunctions fail to equidistribute in phase space along an infinite subsequence of new eigenvalues. For \({d = 2}\), we also show that some semiclassical measures have both strongly localized momentum marginals and non-uniform quantum limits (i.e., the position marginals are non-uniform). For \({d = 3}\), superscarred eigenstates are quite rare, but for \({d = 2}\) we show that the phenomenon is quite common—with \({N_{2}(x) \sim x/\sqrt{\log x}}\) denoting the counting function for the new eigenvalues below x, there are \({\gg N_{2}(x)/{\rm log}^A x}\) eigenvalues \({\lambda}\) with the property that any semiclassical limit along these eigenvalues exhibits superscarring.


  1. 1.
    Anantharaman N., Nonnenmacher S.: Entropy of semiclassical measures of the Walsh-quantized baker’s map. Ann. Henri Poincaré 8(1), 37–74 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Anantharaman, N., Nonnenmacher, S.: Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold. Ann. Inst. Fourier (Grenoble) 57(7), 2465–2523 (2007) (Festival Yves Colin de Verdière)Google Scholar
  3. 3.
    Bäcker A., Schubert R., Stifter P.: On the number of bouncing ball modes in billiards. J. Phys. A: Math. Gen. 30(19), 6783 (1997)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Berkolaiko G., Keating J., Winn B.: No quantum ergodicity for star graphs. Commun. Math. Phys. 250(2), 259–285 (2004)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Berkolaiko G., Keating J.P., Winn B.: Intermediate wave function statistics. Phys. Rev. Lett. 91, 134103 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    Bogomolny, E., Gerland, U., Schmit, C.: Singular statistics. Phys. Rev. E (3) 63(3, part 2), 036206, 16 (2001)Google Scholar
  7. 7.
    Bogomolny E., Schmit C.: Structure of wave functions of pseudointegrable billiards. Phys. Rev. Lett. 92, 244102 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Colin de Verdière Y.: Ergodicité et fonctions propres du laplacien. Commun. Math. Phys. 102(3), 497–502 (1985)CrossRefzbMATHGoogle Scholar
  9. 9.
    Duke W.: Hyperbolic distribution problems and half-integral weight Maass forms. Invent. Math. 92(1), 73–90 (1988)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Duke W., Schulze-Pillot R.: Representation of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids. Invent. Math. 99(1), 49–57 (1990)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Fainsilber, L., Kurlberg, P., Wennberg, B.: Lattice points on circles and discrete velocity models for the Boltzmann equation. SIAM J. Math. Anal. 37(6), 1903–1922 (2006) (electronic)Google Scholar
  12. 12.
    Faure F., Nonnenmacher S.: On the maximal scarring for quantum cat map eigenstates. Commun. Math. Phys. 245(1), 201–214 (2004)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Faure F., Nonnenmacher S., De Bièvre S.: Scarred eigenstates for quantum cat maps of minimal periods. Commun. Math. Phys. 239(3), 449–492 (2003)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Freiberg, T., Kurlberg, P., Rosenzweig, L.: Poisson distribution for gaps between sums of two squares and level spacings for toral point scatterers (in preparation)Google Scholar
  15. 15.
    Friedlander, J., Iwaniec, H.: Opera de cribro, vol. 57, American Mathematical Society Colloquium Publications. American Mathematical Society, Providence (2010)Google Scholar
  16. 16.
    Golubeva, E.P., Fomenko, O.M.: Asymptotic distribution of lattice points on the three-dimensional sphere. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 160(Anal. Teor. Chisel i Teor. Funktsii. 8), pp. 54–71, 297 (1987)Google Scholar
  17. 17.
    Griffin, J.: On the phase-space distribution of Bloch eigenmodes for periodic point scatterers. J. Math. Phys. 57, 082101 (2016). doi: 10.1063/1.4960469
  18. 18.
    Grosswald E.: Representations of Integers as Sums of Squares. Springer, New York (1985)CrossRefzbMATHGoogle Scholar
  19. 19.
    Halberstam, H., Richert, H.-E.: Sieve Methods. London Mathematical Society Monographs, No. 4. Academic Press, A subsidiary of Harcourt Brace Jovanovich, Publishers, London, New York (1974)Google Scholar
  20. 20.
    Hassell, A.: Ergodic billiards that are not quantum unique ergodic. Ann. Math. (2) 171(1), 605–619 (2010) (with an appendix by the author and Luc Hillairet)Google Scholar
  21. 21.
    Jakobson D.: Quantum limits on flat tori. Ann. Math. (2) 145(2), 235–266 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Keating, J.P., Marklof, J., Winn, B.: Localized eigenfunctions in Šeba billiards. J. Math. Phys. 51(6), 062101, 19 (2010)Google Scholar
  23. 23.
    Kelmer D.: Arithmetic quantum unique ergodicity for symplectic linear maps of the multidimensional torus. Ann. Math. (2) 171(2), 815–879 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Kelmer D.: Scarring for quantum maps with simple spectrum. Compos. Math. 147(5), 1608–1612 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Kurlberg P., Rudnick Z.: Hecke theory and equidistribution for the quantization of linear maps of the torus. Duke Math. J. 103(1), 47–77 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Kurlberg, P., Ueberschär, H.: Superscars in the seba billiard. J. Eur. Math. Soc. (JEMS) (to appear)Google Scholar
  27. 27.
    Kurlberg P., Ueberschär H.: Quantum ergodicity for point scatterers on arithmetic tori. Geom. Funct. Anal. 24(5), 1565–1590 (2014)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Lindenstrauss E.: Invariant measures and arithmetic quantum unique ergodicity. Ann. Math. (2) 163(1), 165–219 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Löck S., Bäcker A., Ketzmerick R.: Coupling of bouncing-ball modes to the chaotic sea and their counting function. Phys. Rev. E 85, 016210 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Marklof J., Rudnick Z.: Quantum unique ergodicity for parabolic maps. Geom. Funct. Anal. 10(6), 1554–1578 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Maynard, J.: Dense clusters of primes in subsets. Compos. Math. 152(7), 1–38 (2016)Google Scholar
  32. 32.
    Rivière G.: Entropy of semiclassical measures in dimension 2. Duke Math J. 155(2), 271–336 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Rosenzweig L.: Quantum unique ergodicity for maps on the torus. Ann. Henri Poincaré 7(3), 447–469 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Rudnick Z., Sarnak P.: The behaviour of eigenstates of arithmetic hyperbolic manifolds. Commun. Math. Phys. 161(1), 195–213 (1994)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Rudnick Z., Ueberschär H.: Statistics of wave functions for a point scatterer on the torus. Commun. Math. Phys 316(3), 763–782 (2012)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Rudnick Z., Ueberschär H.: On the eigenvalue spacing distribution for a point scatterer on the flat torus. Ann. Henri Poincaré 15(1), 1–27 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Šeba P.: Wave chaos in singular quantum billiard. Phys. Rev. Lett. 64(16), 1855–1858 (1990)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Šeba P., Życzkowski K.: Wave chaos in quantized classically nonchaotic systems. Phys. Rev. A (3) 44(6), 3457–3465 (1991)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Shigehara T.: Conditions for the appearance of wave chaos in quantum singular systems with a pointlike scatterer. Phys. Rev. E 50, 4357–4370 (1994)ADSCrossRefGoogle Scholar
  40. 40.
    Šnirel’man, A.I.: Ergodic properties of eigenfunctions. Uspehi Mat. Nauk. 29(6(180)), 181–182 (1974)Google Scholar
  41. 41.
    Soundararajan K.: Quantum unique ergodicity for \({{\rm SL}_{2}(\mathbb{Z})\backslash\mathbb{H}}\). Ann. Math. (2) 172(2), 1529–1538 (2010)zbMATHMathSciNetGoogle Scholar
  42. 42.
    Tanner G.: How chaotic is the stadium billiard? A semiclassical analysis. J. Phys. A: Math. Gen. 30(8), 2863 (1997)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Ueberschär, H.: Quantum chaos for point scatterers on flat tori. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372(2007), 20120509, 12 (2014)Google Scholar
  44. 44.
    Yesha N.: Eigenfunction statistics for a point scatterer on a three-dimensional torus. Ann. Henri Poincaré 14(7), 1801–1836 (2013)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Yesha N.: Quantum ergodicity for a point scatterer on the three-dimensional torus. Annales Henri Poincaré 16(1), 1–14 (2015)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Zelditch S.: Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55(4), 919–941 (1987)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MathematicsKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations