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Abstract: We investigate eigenfunctions of the Laplacian perturbed by a delta potential
on the standard toriRd/2πZ

d in dimensions d = 2, 3. Despite quantum ergodicity hold-
ing for the set of “new” eigenfunctions we show that superscars occur—there is phase
space localization along families of closed orbits, in the sense that some semiclassical
measures contain a finite number of Lagrangian components of the form ci ·dxδ(ξ −ξi ),
for ci > 0 uniformly bounded frombelow. In particular, for both d = 2 and d = 3, eigen-
functions fail to equidistribute in phase space along an infinite subsequence of new eigen-
values. For d = 2, we also show that some semiclassical measures have both strongly
localized momentum marginals and non-uniform quantum limits (i.e., the position mar-
ginals are non-uniform). For d = 3, superscarred eigenstates are quite rare, but for d = 2
we show that the phenomenon is quite common—with N2(x) ∼ x/

√
log x denoting the

counting function for the new eigenvalues below x , there are �N2(x)/ logA x eigen-
values λ with the property that any semiclassical limit along these eigenvalues exhibits
superscarring.

1. Introduction

A basic question in Quantum Chaos is the classification of quantum limits of energy
eigenstates of quantized Hamiltonians. For example, if the classical dynamics is given
by the geodesic flow on a compact Riemannian manifold M , the quantized Hamiltonian
is given by the positive Laplacian −Δ acting on L2(M). With {ψλ}λ denoting Laplace
eigenfunctions giving an orthonormal basis for L2(M), a quantum limit is a weak∗
limit of |ψλ(x)|2 along any subsequence of eigenvalues λ tending to infinity. More
generally, given a smooth observable, i.e., a smooth function f on the unit cotangent
bundle S∗(M), its quantization is defined as a pseudo-differential operator Op( f ), and
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one wishes to understand possible semiclassical measures, i.e., limits of the Wigner
distributions

f → 〈Op( f )ψλ,ψλ〉

onC∞(S∗(M)), as λ → ∞. If M has negative curvature (“strong chaos”), the celebrated
quantumunique ergodicity (QUE) conjecture byRudnick and Sarnak [34] asserts that the
only quantum limit is given by the uniform, or Liouville, measure on S∗(M). Conversely,
if the geodesic flow is integrable, many non-uniform quantum limits (and semiclassical
measures) may exist. E.g., if M = R

2/2πZ
2 is a flat torus and a ∈ Z, then ψa(x, y) =

cos(ax) cos(y) is an eigenfunction with eigenvalue a2 + 1, and clearly |ψa(x, y)|2 ∗→
cos2(y)/2 as a → ∞. (For a partial classification of the set of quantum limits on
R
2/2πZ

2, see [21]).
Now, if the flow is ergodic (“weak chaos”), Schnirelman’s theorem [8,40,46] asserts

Quantum Ergodicity, namely that the only semiclassical measure, provided we remove
a zero density subset of the eigenvalues, is the uniform one. However, non-uniform
semiclassical measures may exist along the zero density subsequence of removed eigen-
values. Some interesting questions for quantum ergodic systems are thus: are there any
non-uniform semiclassical measures? If so, how large can the exceptional set of eigen-
values be? Can eigenfunctions have non-uniform quantum limits, i.e., is it possible that
|ψλ(x)|2, along some subsequence, weakly tends to something other than 1/ vol(M)?
We shall address these questions for the set of “new” eigenfunctions of the Laplacian
on a torus perturbed by a delta potential. The perturbation has a very small effect on
the classical dynamics—only a zero measure subset of the set of trajectories is changed
(hence there is no classical ergodicity), yet, as was recently shown [27,35,45], quantum
ergodicity holds for the set of new eigenfunctions. (We note that this is quite different
from point scatterers on tori of the form R

2/Γ , for Γ a generic rectangular lattice. Here
it was recently shown [26] that quantum ergodicity does not hold; in fact almost all new
eigenfunction exhibit strong momentum localization, or “superscarring”, cf. Sect. 1.2).

1.1. Toral point scatterers. The point scatterer, or the Laplacian perturbed with a
delta potential (also known as a “Fermi pseudopotential”), is a popular “toy model”
for studying the transition between chaos and integrability in quantum chaos. With
T

d := R
d/2πZ

d for d = 2 or d = 3, let α ∈ R denote the “strength” of a delta potential
placed at some point x0 ∈ T

d ; the formal operator

−Δ + α · δx0

can then be realized using von Neumann’s theory of self adjoint extensions. For d = 2, 3
there is a one parameter family of self adjoint extensions Hϕ , parametrized by an angle
ϕ ∈ (−π, π ], and the quantum dynamics we consider is generated by Hϕ . For d = 3
we will keep ϕ fixed, but in order to obtain a strong spectral perturbation for d = 2 we
will allow ϕ to slowly vary with the eigenvalue; in the physics literature this is known
as the “strong coupling limit”, cf. Sect. 2 for more details.

The spectrum of Hϕ consists of two types of eigenvalues: “old” and “new” eigen-
values. The old ones are eigenvalues of the unperturbed Laplacian, i.e., integers that
can be represented as sums of d integer squares, and the old eigenfunctions are the
corresponding eigenfunctions of the unperturbed Laplacian that vanish at x0. The set of
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new eigenvalues, denoted by Λ, are all of multiplicity 1, and interlace between the old
eigenvalues. In fact, the new eigenvalues are solutions of the spectral equation

∑

n∈Nd

rd(n)

(
1

n − λ
− n

n2 + 1

)
= C, (1)

where

rd(n) :=
∑

v∈Zd , |v|2=n

1

is the number of ways to represent n as a sum of d squares,

Nd := {n ∈ Z : rd(n) > 0},
and

C = C(ϕ) := tan(ϕ/2) ·
∑

n

rd(n)/(n2 + 1).

is allowed to vary with λ when d = 2.
For λ ∈ Λ a new eigenvalue, the corresponding eigenfunction is then given by the

Green’s functions Gλ = (Δ + λ)−1 δx0 , with L2-expansion

Gλ(x) = − 1

4π2

∑

v∈Zd

exp(−iv · x0)

|v|2 − λ
eiv·x . (2)

We remark that the delta potential introduces singularities at x0; as x → x0, we have
the asymptotic

Gλ(x) =
⎧
⎨

⎩
aλ ·

(
cos(ϕ/2) · log |x−x0|

2π + sin(ϕ/2)
)
+ o(1) for d = 2,

aλ ·
(
cos(ϕ/2) · −1

4π |x−x0| + sin(ϕ/2)
)
+ o(1) for d = 3,

where aλ ∈ R
× for λ �∈ Nd (cf. [35], proof of Lemma A.6). Note that ϕ = π gives the

unperturbed Laplacian; in what follows we will assume that ϕ ∈ (−π, π).
We can now formulate our first result, namely that some eigenfunctions strongly

localize in the momentum representation in dimension three. For l ∈ N3 \ {0} let

Ω(l) :=
{
v/|v| ∈ S

2 : v ∈ Z
3, |v|2 = l

}

be the projection of the lattice points of distance
√

l from the origin onto the unit sphere,
and let μΩ(l) denote the distribution defined by

μΩ(l)( f ) := 1

r3(l)

∑

v∈Z3

|v|2=l

∫

T3
f

(
x,

v

|v|
)

dx, for f ∈ C∞(S∗(T3)),

(we use the identification S∗(T3) � T
3 × S

2), and let ν denote the Liouville measure
on S∗(T3).
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Theorem 1. Let T
3 = R

3/2πZ
3, x0 ∈ T

3 and let Λ be the set of “new” eigenvalues of
the point scatterer, that is Λ = Spec(Hϕ)\N3. For λ ∈ Λ, let gλ ∈ L2(T2) denote the L2-
normalized eigenfunction with eigenvalue λ. Then for any l ∈ N3 there exists an infinite
subset Λl ⊂ Λ, and a ∈ [ 12 , 1] such that for any smooth observable f ∈ C∞(S∗(T3)),

lim
λ→∞, λ∈Λl

〈Op( f )gλ, gλ〉 = a · μΩ(l)( f ) + (1 − a) · ν( f ). (3)

We note that μΩ(l) can be decomposed into a finite sum of components of the form
dxδ(ξ − ξi )/r3(l), where ξi ranges over elements in Ω(l). Each such component is
microlocalized on a Lagrangian plane {(x, ξ) ∈ S∗(T3) : x ∈ T

3, ξ = ξi }, which in
turn can be viewed as a family of closed orbits in the direction ξi—sometimes called a
superscar (cf. [7]). In contrast, Yesha has shown that quantum ergodicity holds for this
model [45], and that the only quantum limit is the uniform one [44]; as we shall see, the
latter is not true in dimension two.

Since a ≥ 1/2 and μΩ(l) is a probability measure, we also note that the singular
part has measure at least 1/2. In comparison, for Anasov systems we expect that semi-
classical measures can have mass at most 1/2 on a periodic orbit; for quantized cat
maps this is shown in [12]. More generally, the upper bound also follows from certain
entropy estimates [1, Conjecture 1.5] known to hold for geodesic flows on manifolds
with constant sectional curvature −1, and for Anasov geodesic flows in dimension two
[2,32].

In dimension 2, when ϕ is fixed, (1) is often referred to as the “weak coupling limit”,
and almost all new eigenvalues remain close to the old eigenvalues (cf. [36]). In the
physics literature another quantization, sometimes referred to as the “strong coupling
limit”, is considered to be more interesting. In [39], Shigehara introduced the notions
of a bare, as well as a physical (or renormalized), coupling constant, and argued that
“wave chaos” appears for fixed physical coupling constant (strong coupling), but not for
fixed bare coupling constant (weak coupling). In particular, he numerically found level
repulsion in the former, but not in the latter—interestingly, the level spacing distribution
for the Šeba billiard does not seem to be given by random matrix theory (see [6] for an
analytical derivation of the two point correlation, assuming a certain random model for
the unperturbed spectrum).

A notable difference from the weak coupling limit, where the operator Hϕ is a fixed
self adjoint extension, the self adjoint extension is allowed to vary with λ in the strong
coupling limit. One way to arrive at the strong coupling limit is to only consider energy
levels in a window around a given eigenvalue: e.g., for η ∈ (131/146, 1) the new
eigenvalues are defined to be solutions of

∑

n∈N2|n−n+(λ)|<n+(λ)η

rd(n)

(
1

n − λ
− n

n2 + 1

)
= 0, (4)

where n+(λ) is the smallest element ofN2 that is larger thanλ. It is convenient to consider
both couplings simultaneously; we may do this by letting

F(λ) =

⎧
⎪⎨

⎪⎩

Constant (weak coupling)
∑

n∈N2|n−n+(λ)|≥n+(λ)η

r2(n)
(

1
n−λ

− n
n2+1

)
(strong coupling) (5)
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and then rewriting the spectral equation as

∑

n∈N2

r2(n)

(
1

n − λ
− n

n2 + 1

)
= F(λ). (6)

We remark that F(λ) = −π log λ+ O(1) in the strong coupling case, see [43, Section 3]
for details.

Our next result, valid for both the weak and strong coupling limit in dimension two,
is the existence of a zero density subsequence of eigenfunctions whose associated semi-
classical measure have singular momentum marginal, as well as non-uniform position
marginal.

Theorem 2. Let T
2 = R

2/2πZ
2, x0 ∈ T

2 and let Λ be the set of new eigenvalues of
the point scatterer, that is Λ = Spec(Hϕ) \ N2. For λ ∈ Λ, let gλ ∈ L2(S∗

T
2) be the

L2-normalized eigenfunction with eigenvalue λ. There exists an infinite subset Λ′ ⊂ Λ

having a semiclassical limit

ν∞( f ) := lim
λ→∞, λ∈Λ′〈Op( f )gλ, gλ〉,

such that ν∞ is non-uniform in position, i.e., with x = (x1, x2) ∈ T
2,

ν∞(ei ·2x2) = c > 0,

and ν∞ is strongly localized in momentum—for positive momentum observables
f (x, ξ) = f0(ξ) ≥ 0,

ν∞( f ) ≥ 1

2
μΩ(∞)( f ),

where Ω(∞) ⊂ S
1 is a multiset of bounded cardinality, and

μΩ(∞) := 1

|Ω(∞)|
∑

ξ∈Ω(∞)

δξ .

Note that μΩ(∞) is a probability measure, hence at least half the mass is carried on the
singular part in the momentum representation.

In order to quantify how common localized eigenfunctions are we need some further
notation. For d = 2, 3, let Nd(x) denote the counting function (“Weyl’s law”) for the
number of new eigenvalues λ ≤ x . For d = 3, N3(x) ∼ x and, as the eigenvalues that
give rise to superscars are essentially powers 4l , the exceptional subset is of size xo(1)

and thus very sparse. For d = 2, N2(x) ∼ x/
√
log x = x1−o(1), and our construction

of eigenfunctions that are non-uniform both in position and momentum gives a corre-
sponding subset of eigenvalues with counting function of size at most x1/2−o(1)—hence
fairly rare. However, if we restrict ourselves to non-uniformity only in the momentum
representation, we can use some recent results by Maynard [31] to show that localized
eigenfunctions are in fact quite common.
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Theorem 3. With notations as in Theorem 2, there exists a subset Λ′′ ⊂ Λ with the
following property: if Λ′′′ ⊂ Λ′′ is any infinite subset such that the semiclassical limit

ν∞( f ) := lim
λ∈Λ′′′〈Op( f )gλ, gλ〉,

exists, then ν∞ is strongly localized in momentum in the sense that there exist a multiset
Ω(∞) ⊂ S

1, allowed to depend on ν∞ but of uniformly bounded cardinality, such that
for positive momentum observables f (x, ξ) = f0(ξ) ≥ 0,

ν∞( f ) ≥ c · μΩ(∞)( f ),

where c > 0 is an absolute constant. Moreover,

|{λ ∈ Λ′′ : λ ≤ x}| � x/(log x)A

for some A > 1.

Remark 4. Without loss of asymptotic density, we may “shrink” Λ′′ such that ν∞
in addition is “flat in position”, i.e., ν∞( f ) = 0 for any observable f such that∫
T2 f (x, ξ) dx = 0 for all ξ ∈ S

1 (cf. Appendix A). Hence ν∞ contains components
that are microlocalized on Lagrangian planes, but unlike the case d = 3 (cf. Theorem 1),
we do not obtain Liouville measure on the complementary components.

1.2. Discussion. In [37] Šeba proposed quantum billiards on rectangles with irrational
aspect ratio, perturbed with a delta potential, as a solvable singular model exhibiting
wave chaos; in particular that the level spacings should be given by random matrix
theory (GOE). Šeba and Życzkowski later noted [38] that the level spacings were not
consistent with GOE, in particular large gaps aremuchmore frequent (essentially having
a Poisson distribution tail). Shigehara subsequently found [39] that level repulsion is only
present in the strong coupling limit. Recently Rudnick and Ueberschär proved [36], in
dimension two, that the level spacing for the weak coupling limit is the same as the level
spacings of the unperturbed Laplacian (after removing multiplicities). This in turn is
conjectured to be Poissonian, and we note that a natural analogue of the prime k-tuple
conjecture for integers that are sums of two squares can be shown to imply Poisson gaps
[14]. In [36] the three dimensional case was also investigated and the mean displacement
between new and old eigenvalues was shown to equal half the mean spacing.

In [35], Rudnick and Ueberschär proved a position space analogue of Quantum
Ergodicity for the new eigenfunctions: there exists a full density subset of the new
eigenvalues such that as λ → ∞ along this subset, the only weak limit of |ψλ(x)|2 is
the uniform measure on T

2. Further, in [27] the first author and Ueberschär proved an
analogue of QuantumErgodicity: there exists a full density subset of the new eigenvalues
such that the only quantum limit along this subset is the uniform measure on the full
phase space (i.e., the unit cotangent bundle S∗(Td)). This result was later shown to
hold also for d = 3 by Yesha [45]; already in [44] he showed that all eigenfunctions
equidistribute in the position representation.

For irrational tori, Keating, Marklof and Winn proved [22] that there exist non-
uniform quantum limits (in fact, strong momentum scarring was already observed in
[5]), assuming a spectral clustering condition implied by the old eigenvalues having
Poisson spacings (which in turn follows from the Berry–Tabor conjecture). Recently the
first author and Ueberschär unconditionally showed [26] that for tori having diophantine
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aspect ratio, essentially all new eigenfunctions exhibit superscarring in the following
sense: given any δ > 0, the proportion of eigenfunction exhibiting superscarring is at
least 1−δ. Finally, Griffin recently showed [17] that similar results hold for Bloch eigen-
modes (i.e., non-zero quasimomentum) for periodic point scatterers in three dimensions,
provided a certain Diophantine condition on the aspect ratio holds.

1.3. Scarring and QUE for some other models. For quantum ergodic systems almost
all eigenfunctions equidistribute, but in general not much is known about the (potential)
subset of exceptional eigenfunctions giving non-uniform quantum limits. In some cases
Quantum Unique Ergodicity is known to hold; notable examples are Hecke eigenfunc-
tions on modular surfaces [28,41] and “quantized cat maps” [23,25]. For these models
there exist large commuting families of “Hecke symmetries” that also commute with
the quantized Hamiltonian, and it is then natural to consider joint eigenfunctions of the
full family of commuting operators. Other examples arise when the underlying classical
dynamics is uniquely ergodic, QUE is then “automatic”, e.g., see [30,33].

On the other hand there are quantum ergodic systems exhibiting scarring. For exam-
ple, if Hecke symmetries are not taken into account, quantized cat maps can have very
large spectral degeneracies. Using this, Faure, Nonnenmacher and de-Bievre [13] proved
that scars occur in this model. For higher dimensional analogues of cat maps, Kelmer
found a scar construction not involving spectral degeneracies, but rather certain invariant
rational isotropic subspaces [23,24].

We also note that Berkolaiko, Keating, and Winn have shown [4,5] that position
scarring can occur for quantum star graphs. e.g., for certain star graphs with a fixed (but
arbitrarily large) number of bonds, there exists quantum limits supported only on two
bonds (consequently, if the graph is viewed as embedded in Euclidean space, there is
also localization in momentum).

Another way to construct localized eigenfunctions is to use “bouncing ball quasi-
modes”. For example, functions of the form ψn(x, y) = f (x) sin(ny) are approximate
Laplace eigenfunctions on a stadium shaped domain (say with Dirichlet boundary con-
ditions), and semiclassically localize on vertical periodic trajectories. Hassell showed
[20] that for a generic aspect ratio stadium, there are few eigenvalues near n2 and hence
ψn overlaps strongly with an eigenfunction φn , with eigenvalue near n2, which also
localizes on vertical periodic trajectories.

In [3,29,42] the asymptotics for the number of “bouncing ball eigenfunctions” having
eigenvalue at most E were studied for some ergodic billiards having parallell walls.

e.g., for the stadium billiard, numerics and an “adiabatic separation ansatz” indicated
that the number of bouncing ball eigenfunctions, with eigenvalue at most E , is of order
E3/4. This is to be compared with the Weyl asymptotic c · E , and hence bouncing
ball eigenfunctions are fairly rare. Interestingly, in [3] it was argued that given any
δ ∈ (1/2, 1), there exists a Sinai type billiard, with the area of the internal obstacle
bounded from below, whose bouncing ball eigenfunction count is of order cδ · Eδ . In a
sense, Theorem 3 is a “shrinking obstacle” analog of this phenomena, as bouncing ball
eigenfunction are highly localized in the momentum representation.

1.4. Outline of the proofs. The proofs are based on finding new eigenvalues λ that are
“abnormally close” to certain old eigenvalues that have “abnormally small” multiplicity.
More precisely, after rewriting equation (6) as
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rd(m)

m − λ
− m

m2 + 1
+ Hm(λ) = 0, (7)

where

Hm(λ) :=
∑

n �=m
n∈Nd

rd(n)

(
1

n − λ
− n

n2 + 1

)
− F(λ),

we show that for certain m ∈ Nd there exists a new eigenvalue λ such that |m − λ| �√
rd(m)/H ′

m(m). Using number theoretic techniques, we then find a subsequence of
integers m such that

√
rd(m)/H ′

m(m) is small and rd(m) is bounded, and thus get a
control on the distance of a new eigenvalue from these m.

In spirit, we use a nearby old eigenvalue m′, with rd(m′) much larger than rd(m), to
“push” the new eigenvalue λ very close to m (though it must be stressed that we do not
know whether λ > m or λ < m). Having

√
rd(m)/H ′

m(m) bounded turns out to imply
that significant L2-mass of the Green’s function Gλ (cf. (2)) is carried by the finite sum

∑

v∈Zd :|v|2=m

exp(−iv · x0)

|v|2 − λ
eiv·x

which, since rd(m) is bounded, gives momentum localization on {v/|v| : v ∈ Z
d :

|v| = m} ⊂ S
d−1. To obtain non-uniform quantum limits for d = 2, we impose the

additional constraint that the set {v ∈ Z
2 : |v|2 = m} contains two points v, v′ such that

|v − v′| is bounded; for m = n2 + 1 we may take v = (n, 1) and v′ = (n,−1); using
that r2(m) is bounded we then obtain positive mass on the Fourier mode eiw·x , where
w = v − v′ = (0, 2). (In contrast, for d = 3, the minimum distance between distinct
lattice points vi , v

′
i ∈ Z

3 such that |vi |2 = |v′
i |2 = mi must grow if mi → ∞ in such a

way that r3(mi ) remains bounded).
The paper is organized as follows: In Sect. 2 we set the necessary background for the

point scatterer model, then give some number theoretic background, and in Sect. 3 we
prove some auxiliary analytic and number theoretic results needed in the proofs of our
main theorems. In Sects. 4 and 5 we prove Theorems 1 and 2, and Sect. 6 contains the
proof of Theorem 3.

2. Background

In this section we briefly review some results and definitions about point scatterers and
give a short number theoretic background.

2.1. Point scatterers on the flat torus. We begin with the point scatterers, and recall the
definition and properties of the quantization of observables (see [27,35] for more details;
further background can be found in [43,45]).

2.1.1. Basic definitions and properties. For d = 2, 3 we consider the restriction of the
Laplacian −Δ on

D0 := C∞
0 (Td \ {x0}).
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The restriction is symmetric though not self-adjoint, but by von Neumann’s theory of
self adjoint extensions there exists a one-parameter family of self-adjoint extensions; for
ϕ ∈ (−π, π ] there exists a self-adjoint extension Hϕ , where the case ϕ = π corresponds
to the unperturbed Laplacian. The spectrum of Hϕ consists of two types of eigenvalues
and eigenfunctions:

1. Eigenvalues of the unperturbed Laplacian, and the corresponding eigenfunctions that
vanish at x0. The multiplicities of the new eigenvalues are reduced by 1, due to the
constraint of vanishing at x0.

2. New eigenvalues λ ∈ R satisfying the equation

∑

n∈Nd

rd(n)

(
1

n − λ
− n

n2 + 1

)
= c0 tan

(ϕ

2

)
. (8)

For λ ∈ R satisfying (8), the corresponding Green’s function

Gλ(x, x0) = (Δ + λ)−1 δx0

= − 1

4π2

∑

v∈Zd

exp(−iv · x0)

|v|2 − λ
eiv·x , x �= x0 (9)

is an eigenfunction, and

gλ(x, x0) := Gλ(x, x0)

‖Gλ‖ =

∑

v∈Zd

exp(−iv · x0)

|v|2 − λ
eiv·x

⎛

⎝
∑

n∈Nd

rd(n)

|n − λ|2

⎞

⎠
1/2 (10)

is an L2-normalized eigenfunction.

2.1.2. Strong coupling. In the physics literature, for d = 2, the “strong coupling limit”
is considered more relevant than the weak coupling limit given by (8). A convenient way
of arriving at this quantization is by truncating the summation in (8) outside an energy
window of size O(λη) for any fixed η > 131/146 (cf. [43, Section 3]). This leads to the
following spectral equation for the new eigenvalues:

∑

n∈N2|n−n+(λ)|<n+(λ)η

r2(n)

(
1

n − λ
− n

n2 + 1

)
= c0 tan

(ϕ

2

)
. (11)

2.1.3. Quantization of observables. Given a smooth observable a(x, ξ) on S∗(Td) �
T

d × S
d−1 we define the quantization of it as a pseudo-differential operator Op(a) :

C∞(Td) → C∞(Td). We refer the reader to [27] for details on the two dimensional
case, and [45] for the three dimensional case. We are mainly focusing on either pure
momentum, or pure position observables, that is

a(x, ξ) = a(ξ) ∈ C∞(Sd−1), or a(x, ξ) = a(x) ∈ C∞(Td) respectively. Given
f (x) ∈ C∞(Td), the action of a pure position observable a = a(x) ∈ C∞(Td) is given
by

(Op(a) f )(x) = a(x) f (x), (12)
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whereas the action of a pure momentum observable a = a(ξ) ∈ C∞(Sd−1) is given by

(Op(a) f )(x) =
∑

v∈Zd

a

(
v

|v|
)

f̂ (v)eiv·x ; (13)

in particular, for pure momentum observables we have

〈Op(a) f, f 〉 =
∑

v∈Zd

a

(
v

|v|
)

| f̂ (v)|2. (14)

(some care is required for the terms for which v = 0; it is convenient to interpret a(v/|v|)
for v = 0 as the spherical average

∫
Sd−1 a(ξ)dξ , with the measure normalized so that∫

Sd−1 1 dξ = 1).

2.2. Number theoretic background. We begin by recalling some convenient notations.
We use the Landau symbols O and o and the Vinogradov symbols � and � with their
usual meaning. That is, A = O(B), A � B and B � A are all equivalent to the fact
that |A| < cB holds for some absolute constant c > 0, while A = o(B) means that
A/B → 0. In case the implied constant is allowed to depend on some parameter (say
ε), we write A = Oε(B) or A �ε B.

2.2.1. Integers that are sums of 2 or 3 squares. We begin with a short summary about
integers that can be represented as sums of d squares for d = 2 or 3.

Sums of 2 squares: It is well known (e.g., see [11]) that r2(n) is determined by the
prime factorization of n. If we write

n = 2a0 pa1
1 . . . par

r qb1
1 . . . qbl

l ,

where the pi ’s are primes all≡ 1 (mod 4), and the qi ’s are primes all≡ 3 (mod 4), then
n is a sum of two squares if and only if all the bi are even, and r2(n) = 4d(pa1

1 . . . par
r ),

where d(m) := ∑
l|m 1 is the divisor function.

Sums of 3 squares:For d = 3, any number n that is not of the form n = 4an1,where 4 � n1
and n1 ≡ 7 (mod 8) can be represented as a sumof 3 squares.Moreover, r3(4n) = r3(n)

for any n ∈ Z, and if we let R3(n) denote the number of primitive representation of n
as a sum of 3 squares (that is the number of ways to write n = x2 + y2 + z2 with x, y, z
coprime), we can relate r3(n) to class numbers of quadratic imaginary fields as follows
(cf. [18, Theorem 4, p. 54]):

r3(n) =
∑

d2|n
R3(

n

d2 ), R3(n) = π−1Gn
√

nL(1, χn), (15)

where

Gn =

⎧
⎪⎨

⎪⎩

0 n ≡ 0, 4, 7 (mod 8)
16 n ≡ 3 (mod 8)
24 n ≡ 1, 2, 5, 6 (mod 8)

,
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and

L(s, χn) =
∞∑

m=1

χn(m)m−s

is theDirichlet L-series associatedwith themultiplicative characterχn(m) := (−4n/m),
where (−4n/m) is the Kronecker symbol. By a celebrated theorem of Siegel, for any
ε > 0, L(1, χn) �ε n−ε and thus, for n �≡ 0, 4, 7 mod 8,

r3(n) ≥ R3(n) �ε n1/2−ε . (16)

Further, given an integer n that is a sum of 3 squares, let

Ω(n) :=
{

(x, y, z)√
n

: (x, y, z) ∈ Z
3, x2 + y2 + z2 = n

}
⊂ S

2.

Fomenko–Golubeva and Duke showed (see [9,16], or [10, Lemma 2]) that the setsΩ(n)

equidistribute in S
2 as r3(n) → ∞ (or equivalently n1 → ∞) insideN3. Namely, there

exists α > 0, such that for any spherical harmonic Y (x), there is significant cancellation
in the following analogue of a Weyl sum

WY (n) :=
∑

ξ∈Ω(n)

Y (ξ),

in the sense that
WY (n) � n1/2−α

1 � n1/2−α (17)

where the implied constant is independent of n.

2.3. Sieve method results. In order to proveTheorem3 and the second part of Theorem2,
we will need some sieve results that show the existence of various infinite sequences
of integers with bounded number of prime divisors. We first recall a few definitions.
A positive integer n is called r-almost prime if n has at most r prime divisors. We
denote by Pr the set of all r -almost prime integers. A finite set of polynomials F =
{F1(x), . . . , Fk(x)} ⊂ Z[x] is called admissible if F(x) := ∏k

i=1 Fi (x) has no fixed
prime divisors, that is the equation F(x) ≡ 0 (mod p) has less than p solutions for any
prime p. The following theorem combines results from [15,19,31]:

Theorem 5. Let F1(x), . . . , Fk(x) ∈ Z[x] (k ≥ 1) be a finite admissible set of irre-
ducible polynomials, and let F(x) := F1(x) · · · Fk(x). Let G denote the degree of F.
Then,

1. [19, Theorem 10.4] There exists an integer R(k, G), such that for any r > R(k, G),
as x → ∞,

# {n ∈ Z, n ≤ x : F(n) ∈ Pr } � x

logk x

2. [15, Theorem 25.4] If k = 1, then one can take R(k, G) = G + 1, and therefore as
x → ∞

# {n ≤ x : F(n) ∈ PG+1} � x

log x
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3. [31, Theorem 3.4] If k is large enough, and F1(x), . . . , Fk(x) are all linear with
positive coefficients, then as x → ∞

|{n ≤ x : at least two of the Fi (n), 1 ≤ i ≤ k, are prime}| � x

(log x)k

3. Auxiliary Results

Before proceeding to the proofs of the main theorems, we begin with a few auxiliary
results. For the benefit of the reader we note that Lemma 6 is relevant for all theorems,
Lemma 7 is used in the proof of Theorem 2, whereas Lemma 8 and Proposition 9 are
used in the proof of Theorem 3.

3.1. Nearby zeros. The following simple result will be crucial in finding integers m in
the old spectrum for which there exist a nearby new eigenvalue λ.

Lemma 6. Let I be a closed symmetric interval containing zero, and let f be C1 function
on I . Let A > 0 be a real number, and assume that B := minδ∈I f ′(δ) > 0. If

√
A/B ∈ I

there exists δ0 ∈ [−√
A/B,

√
A/B] such that

f (δ0) = A/δ0.

Proof. Let I + = I ∩ [0,∞], and let I − = I ∩ [−∞, 0]. For δ ∈ I +, we have f (δ) ≥
f (0) + Bδ. Similarly, for δ ∈ I −, f (δ) ≤ f (0) + Bδ. Thus, since A, B > 0, if

f (0) + Bδ1 = A/δ1

for δ1 ∈ I +, there exists δ0 ∈ [0, δ1] such that f (δ0) = A/δ0. Similarly, if f (0)+ Bδ1 =
A/δ1 for δ1 ∈ I −, there exists δ0 ∈ [δ1, 0] such that f (δ0) = A/δ0.

To conclude the proof it is enough to show that

f (0) + Bδ = A/δ

has a solution in [−√
A/B,

√
A/B], but this is clear since Bδ2 + f (0)δ − A = 0 has at

least one root δ1 for which |δ1| ≤ √
A/B.

3.2. Sequences of sums of two squares. In this section we will show the existence of
“good sequences” of integers m = n2 + 1 such that r2(m) is bounded, while r2(m + 3)
is “large”. For such m we can then find a new eigenvalue λ such that |λ − m| is small,
and gλ is localized in both momentum and position.

Lemma 7. Given γ ∈ (0, 1/10) there exists an infinite set Mγ ⊂ N2 with the following
properties: ∀m ∈ Mγ

m = n2 + 1

for some n ∈ Z
+,

r2(m) ≤ 32, (18)

and
r2(m + 3) ≥ 10r2(m)/γ 2. (19)



Superscars for Arithmetic Toral Point Scatterers 341

Proof. We apply part (2) of Theorem 5 in the following setting: For K ∈ Z
+ define

P(K ) =
∏

p≤K
p≡1 (mod 4)

p,

and r(K ) ∈ Z
+ solving the following congruences:

r(K )2 + 4 ≡ 0 (mod p) if p ≡ 1 (mod 4), p ≤ K

r(K ) ≡ 0 (mod 2)

Note that the latter equation has a solution by the Chinese remainder theorem together
with −4 being a quadratic residue for any prime p ≡ 1 (mod 4). We may take 0 ≤
r(K ) < 2P(K ) but any fixed choice will suffice. Let f (x) = x2 + 1, and let xK (n) =
2P(K ) · n + r(K ). The polynomial F(n) := f (xK (n)) satisfies all the conditions of
the theorem (it is irreducible and no prime divides all coefficients), and therefore there
are infinitely many n such that F(n) has at most 3 prime factors, and in particular
r2(F(n)) ≤ 32. By construction, F(n) + 3 = xk(n)2 + 22 ≡ 0 (mod p) for p ≤ K and
p ≡ 1 (mod 4), hence r2(F(n) + 3) ≥ 4 · 2π(K ;1,4), where π(K ; 1, 4) is the number of
primes occurring in the product defining P(K ). By choosing K appropriately, we get
that

r2(F(n) + 3) ≥ 4d(P(K )) ≥ 2π(K ;1,4)+2 ≥ 320/γ 2 ≥ 10r2(F(n))/γ 2

Lemma 8. Given H, R ≥ 2 there exists elements 0 < a1 < a2 . . . < aH in N2 such
that aH − a1 < H2, 0 < r2(a1) < . . . < r2(aH ) �H RH , and

r2(ai+1) > R · r2(ai )

holds for some 0 < i < H.

Proof. Define

Q1 = Q1(H) :=
∏

p<2H

pE p

where the exponents E p are chosen as follows: let E p = 1 if p ≡ 3 mod 4, otherwise
let E p be the minimal integer so that pE p > H2.

Further, let q1 < q2 < · · · < qH be primes congruent to 1 mod 4, chosen so that
q1 > 2H , and given integer exponents e1, . . . , eH ≥ 1, define

Q2 = Q2(e1, e2, . . . , eH ) :=
∏

i≤H

qei
i

and finally let Q := Q1 · Q2.
By the Chinese remainder theorem we may find γ mod Q such that the following

holds:

γ ≡ 0 mod pE p if p ≡ 1, 2 mod 4 and p < 2H, (20)

γ ≡ 1 mod p if p ≡ 3 mod 4 and p < 2H (21)

and for each prime qi |Q2 so that
qei

i ||(γ 2 + i2) (22)
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Letting di = (Q2
1, γ

2 + i2) we define polynomials Gi ∈ Q[t] by
Gi (t) := ((Qt + γ )2 + i2)/(qei

i di ), i = 1, 2, . . . , H.

By definition, di |γ 2 + i2, and (22) implies that qei
i |γ 2 + i2. Thus, since (Q1, Q2) = 1

implies that (qi , di ) = 1, we find that qei
i di |γ 2 + i2 and consequently Gi (t) ∈ Z[t] for

all i .

Claim. {Gi }H
i=1 is an admissible set of polynomials (i.e.,

∏H
i=1 Gi (x) does not have any

fixed prime divisors).

To prove the claim we argue as follows: If p > 2H and all Gi are nonconstant modulo
p (i.e., p � Q) there are at most 2H residues n (modulo p) for which Gi (n) ≡ 0 mod p
for some i . Hence there exist n ∈ Z such that

∏H
i=1 Gi (n) �≡ 0 mod p.

On the other hand, if p > 2H and p|Q then p = qi for some i , and by the definition of
Gi [in particular, recall (22)], we find that Gi (n) �≡ 0 mod qi for all n ∈ Z. Moreover,
if j �= i ,

γ 2 + j2 ≡ γ 2 + i2 + j2 − i2 ≡ j2 − i2 �≡ 0 mod qi

(as 0 < |i − j | < H , 0 < i + j < 2H and qi > 2H ), and thus G j (n) �≡ 0 mod qi for
all n ∈ Z.

For p < 2H we argue as follows: if p ≡ 3 mod 4, (21) gives that γ 2 + i2 �≡ 0
mod p for all i ∈ Z. Otherwise, i2 ≤ H2 < pE p by our choice of E p, and since γ was
chosen so that γ ≡ 0 mod pE p [recall (20)], we find that γ 2 + i2 ≡ i2 �≡ 0 mod p2E p ,
as i2 ≤ H2 and pE p > H2. Consequently (γ 2 + i2)/di is not divisible by p. The proof
of the claim is concluded.

Now, given an integer r > 0, let Pr denote the set of integers that can be written as
a product of at most r primes, as in Sect. 2.3. Since the polynomials {Gi (x)}H

i=1 form
an admissible set, part (1) of Theorem 5 implies that there exists some r > 0 (only
depending on H ) such that

H∏

i=1

Gi (n) ∈ Pr

for infinitely many n. Given such an n, let mi = Gi (n); then each mi is a sum of squares
that in addition has at most r prime factors. Consequently, if we set ai = mi · qei

i · di ,
we find that ai ∈ N2 for all 1 ≤ i ≤ H , and that

ei + 1 ≤ r2(ai ) ≤ 4C · (ei + 1)

whereC = C(H) ≥ 1 is independent of the exponents e1, . . . , eH . Choosing e1, . . . , eH
appropriately we can ensure that r2(ai+1) > R · r2(ai ) holds for all i , as well as that
r2(aH ) �H C H RH �H RH (a somewhat better C-dependency can be obtained but
we shall not need it).

Finally, since

ai = mi q
ei
i di = Gi (n)qei

i di = (Qn + γ )2 + i2

we find that aH − a1 = H2 − 1 < H2 and the proof of Lemma 8 is concluded.
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The following proposition might be of independent interest—using the full power of
[31], the method of the proof in fact gives the following: given k ≥ 2 and R > 1 there
exists A > 0 such that, as x → ∞, there are � x/(log x)A integers n ≤ x such that
r2(n+hi+1) ≥ Rr2(n+hi ) holds for i = 1, . . . , k−1 and 0 < h1 < h2 < · · · < hk �k 1.
For simplicity we only state and prove it for k = 2.

Proposition 9. There exist an integer H ≥ 1 with the following property: for all suffi-
ciently large R there exist an integer h ∈ (0, H2) such that

|{n ∈ N2 : n ≤ x, 0 < r2(n) � RH , r2(n + h) ≥ R · r2(n)}| �R x/(log x)H

as x → ∞.

Proof. By part (3) of Theorem 5 there exists integers i, j such that 0 < i < j ≤ H with
the property that

|{n ≤ x : Fi (n), Fj (n) both prime}| � x/ logH x

for {F1, F2, . . . , FH } any admissible set of H linear forms, provided H is sufficiently
large. For such an H , and a given (large) R, Lemma 8 shows there exists a1, . . . , aH > 0
such that

r2(ai+1) ≥ R · r2(ai ) > 0

for 1 ≤ i < H , and r2(aH ) � RH . If we define

Fi (n) := ai · n + 1

for 1 ≤ i ≤ H we obtain a set of H admissible linear forms (here admissibility is trivial
since Fi (0) �≡ 0 mod p for any prime p), hence there exists i, j with j > i such that

|{n ≤ x : Fi (n), Fj (n) both prime}| � x/ logH x

Further, given primes p = Fi (n) and p′ = Fj (n), define m = a j · p and m′ = ai · p′.
Now, since ai ≡ 0 mod 4 for all i , Fi (n) ≡ 1 mod 4 for all n, hence p, p′ ≡ 1 mod 4
and consequently m, m′ ∈ N2. Further, m′ �R x ; letting h = m − m′ we find that

h = m − m′ = a j · Fi (n) − ai · Fj (n) = a j − ai

and thus 0 < h < H2. Moreover,

r2(m) = r2(p · a j ) = 2 · r2(a j )

and similary r2(m′) = 2 · r2(ai ). Since r2(a j ) ≥ R · r2(ai ) we find that

r2(m
′) ≥ R · r2(m),

and that r2(m) = 2 · r2(ai ) � RH . Taking n = m′ and h = m − m′ we find that the
number of n �R x with the desired property is � x/(log x)H , thus concluding the
proof.
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4. Proof of Theorem 1

By a standard approximation argument it is enough to prove the statement for some
orthogonal basis of smooth observables (e.g., see [27, Section 4]). Thus, given m, l let
Y = Yl,m(ξ) denote a (say L2-normalized) spherical harmonic of degree l and order m
on S

2. Further, given Y and v ∈ Z
3, define

ev,Y (x, ξ) := eiv·x · Y (ξ)

Since μΩ(l)(ew,Y ) = 0 for w �= 0, we begin by showing that the same holds for any
semiclassical measure. The following result is implicit in the proof of [45, Proposi-
tion 7.1]; it is stated only for a limit along a full density subset of new eigenvalues, but
the proof gives a slightly stronger result.

Lemma 10. If w ∈ Z
3 is nonzero, then

lim
λ→∞, λ�∈N3

〈Op(ew,Y )gλ, gλ〉 = 0

Proof. For the convenience of the reader, we briefly recall Yesha’s argument. Given
δ ∈ (0, 1/28) let L := λδ and define a truncated Green’s function

Gλ,L(x, x0) :=
∑

v∈Z3:||v|2−λ|<L

eiv·(x−x0)

|v|2 − λ
,

and let gλ,L := Gλ,L
‖Gλ,L‖2 denote the corresponding L2 normalized function. Then (cf.

[45, Section 4]) ‖gλ,L − gλ‖2 → 0 as λ → ∞, and for all smooth observables f ∈
C∞(S∗(T3)),

|〈Op( f )gλ, gλ〉 − 〈Op( f )gλ,L , gλ,L〉| � f ‖gλ − gλ,L‖22.
By [45, Proposition 7.1] (note that w �= 0), 〈Op(ew,Y )gλ,L , gλ,L〉 → 0 as λ → ∞, and
hence 〈Op(ew,Y )gλ, gλ〉 → 0 as λ → ∞ in such a way that λ �∈ N3.

We next treat the case of pure momentum observables, i.e., f ∈ C∞(S∗(T3)) of
the form f (x, ξ) = Y (ξ) for Y (x) a spherical harmonic on S

2. By the definition of
gλ = Gλ‖Gλ‖ (cf. (10)), and the action of Op(Y ) (cf. (14)) we get

〈Op(Y )gλ, gλ〉 =
∑

v∈Z3 Y
(

v
|v|

) (
1

|v|2−λ

)2

∑
v∈Z3

(
1

|v|2−λ

)2 =
∑

n∈N3
WY (n)

(
1

n−λ

)2

∑
n∈N3

r3(n)
(

1
n−λ

)2

=
WY (m) + (m − λ)2

∑
n∈N3\{m} WY (n)

(
1

n−λ

)2

r3(m) + (m − λ)2
∑

n∈N3\{m} r3(n)
(

1
n−λ

)2 (23)

for any m ∈ N3. Now, for m ∈ N3, define

Hm(λ) :=
∑

n∈N3\{m}
r3(n)

(
1

n − λ
− n

n2 + 1

)
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and rewrite the “new” eigenvalue equation (8) as

r3(m)

m − λ
− m

m2 + 1
+ Hm(λ) = c0 tan

(ϕ

2

)
. (24)

We can now apply Lemma 6. Setting λ = m + δ, let

fm(δ) := Hm(m + δ) − m

m2 + 1
− c0 tan

(ϕ

2

)
.

Then

f ′
m(δ) =

∑

n∈N3\{m}

r3(n)

(n − m − δ)2
> 0 (25)

Notice that for |δ| < 1
2 there exists an absolute constant C > 1 such that

1

C
f ′
m(0) ≤ f ′

m(δ) ≤ C f ′
m(0). (26)

Equation (24) can now be rewritten as

fm(δ) = r3(m)

δ

hence, provided that we can find m for which the bound
√

Cr3(m)/ f ′
m(0) < 1

2 holds,
we may take I = [−1/2, 1/2] in Lemma 6 and obtain an eigenvalue λ such that

|λ − m| <
√

Cr3(m)/ f ′
m(0). (27)

To find m for which the above bound is valid, we proceed as follows. For l ∈ N3 fixed,
define

Ω(l) :=
{

v

‖v‖ : ‖v‖2 = l, v ∈ Z
3
}

and let Ml := {
4kl : k ∈ N

}
. For m ∈ Ml we then have r3(m) = r3(l), hence r3(m)

is uniformly bounded; we also note that Ω(m) = Ω(l). Since for any integer m there
exists an integer m′ �≡ 0, 4, 7 (mod 8) of bounded distance from m, (16) implies that

f ′
m(0) =

∑

n∈N3

r3(n)

|n − m|2 ≥ r3(m′)
|m′ − m|2 � r3(m

′) � (m′)1/2−ε � m1/2−ε. (28)

Since r3(m) is uniformly bounded for m ∈ Ml , we find that

√
Cr3(m)/ f ′

m(0) < m−1/4+ε

for all sufficiently large m ∈ Ml . By the above argument, we have thus found infinitely
many m for which there exist a nearby new eigenvalue λ = λm satisfying |m − λ| <√

Cr3(l)/ f ′
m(0) < m−1/4+ε . In fact, using (28) we can apply Lemma 6 again, to get that

(26) holds for C = 1 + O(m−1/4+ε) and δ = O(m−1/4+ε). Let Λ̃l be the sequence of
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these eigenvalues; for λ ∈ Λ̃l we then find, upon recalling the equality in (25), and that
(26) is valid since |m − λ| = O(m−1/4+ε), that

|m − λ|2
∑

n∈N3\{m}

r3(n)

|n − λ|2

≤ (1 + o(m−1/4))r3(l)

f ′
m(0)

∑

n∈N3\{m}

r3(n)

|n − λ|2 = (1 + O(m−1/4+ε))2r3(l) (29)

which is bounded. We now define Λl by chosing an infinite subset of Λ̃l such that the
limit

Al := lim
λ∈Λl

|m − λ|2
r3(l)

∑

n∈N3\{m}

r3(n)

|n − λ|2 ≥ 0

exists; note that Al ≤ 1 by (29). Furthermore, for any spherical harmonic Y ,

|m − λ|2
∑

n∈N3\{m}

|WY (n)|
|n − λ|2 ≤ Cr3(l)/ f ′

m(0)
∑

n∈N3\{m}

|WY (n)|
|n − λ|2 . (30)

We claim that the RHS converges to 0 as m → ∞. To see this, write
∑

n∈N3\{m}

|WY (n)|
|n − λ|2 =

∑

n∈N3\{m}
n≤m+m1/3

|WY (n)|
|n − λ|2 +

∑

n∈N3\{m}
n>m+m1/3

|WY (n)|
|n − λ|2 .

For the first sum, using that |λ− n| > 1/2 for n �= m together with the bound WY (n) �
m1/2−α (using (17)) we find that for all n ≤ m + m1/3 in the summand, the first sum is
� m1/2−α . For the second sum, the mean value theorem gives that

WY (n) � n1/2−α = (n − m)1/2−α + O

(
m

(n − m)1/2+α

)

and thus,

∑

n>m+m1/3

WY (n)

|n − m|2 �
∑

n−m>m1/3

1

|n − m|3/2+α
+ O

⎛

⎝
∑

n−m>m1/3

m

|n − m|5/2+α

⎞

⎠

� m−1/3(1/2+α) + m1−1/3(3/2+α) � m1/2−α/3. (31)

Hence, since f ′
m(0) � m1/2−ε (cf. (28)),

Cr3(l)

f ′(0)
∑

n∈N3

WY (n)

|n − m|2 � m1/2−α/3

m1/2−ε
� m−α/3+ε (32)

Thus, for any fixed spherical harmonic Y , for λ ∈ Λl tending to infinity, we have

〈Op(Y )gλ, gλ〉 =
{

WY (l)+o(1)
(1+Al+o(1))r3(l)

+ O(λ−α+ε) if Y is non trivial,

1 if Y is trivial.
.

As λ grows, these are the spherical harmonics coefficients of the measure 1
1+Al

δΩ(l) +
Al

1+Al
ν, and the proof is concluded (recall that ν denotes the uniform measure, and that

Al ≤ 1, hence the singular part has mass at least 1/2).
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5. Proof of Theorem 2

Westart byfinding a sequence of neweigenvalues lying close to the set of old eigenvalues.
To do so we will again use Lemma 6. Recall that

F(λ) =

⎧
⎪⎨

⎪⎩

Constant (weak coupling)
∑

n∈N2|n−n+(λ)|≥n+(λ)η

r2(n)
(

1
n−λ

− n
n2+1

)
(strong coupling) (33)

and in analogy with the three dimensional case we define

Hm(λ) =
∑

n∈N2\{m}
r2(n)

(
1

n − λ
− n

n2 + 1

)
− F(λ)

=
∑

n∈I (λ)\{m}
r2(n)

(
1

n − λ
− n

n2 + 1

)
(34)

where (for some fixed η > 131/146)

I (λ) :=
{
N2 ∩ [n+(λ) − n+(λ)η, n+(λ) + n+(λ)η] (strong coupling)
N2 (weak coupling)

(for simplicity, we only treat the case C = 0 in the weak coupling limit; the same
argument works for any fixed C).

Proposition 11. Let F(λ) be as above, and given γ ∈ (0, 1/10) let Mγ be the set of
integers given by Lemma 7. Then, for any m ∈ Mγ , there exists a new eigenvalue λ

such that |λ − m| ≤ γ and

H ′
m(λ) ≤ (1 + O(γ )) · r2(m)

(m − λ)2
(35)

as γ → 0.

Proof. Given m ∈ Mγ we start by finding (at least one) nearby new eigenvalue. To do
so, rewrite the eigenvalue equation [i.e., (8) in the weak coupling limit, or (11) in the
strong coupling limit]

∑

n∈S

r2(n)

(
1

n − λ
− n

n2 + 1

)
= F(λ),

as

r2(m)

(
1

m − λ
− m

m2 + 1

)
+ Hm(λ) = 0.

Thus, with λ = m + δ, and defining f (δ) = Hm(m + δ) − r2(m) m
m2+1

, we wish to find
(small) solutions to

f (δ) = r2(m)

δ
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Now, by (33), f ′(δ) is always a sum of positive terms, hence we may drop all terms but
one, say the one corresponding to k = m + 3 (recall that m = n2 + 1, hence k = n2 + 4
is a sum of two squares), and find that

f ′(δ) ≥ r2(m + 3)

((m + 3) − (m + δ))2
= r2(m + 3)

(3 − δ)2
≥ r2(m + 3)

10

for |δ| ≤ 1/10. By Lemma 6, there exists δ0 such that

f (δ0) = r2(m)

δ0

and

|δ0| ≤ √
10r2(m)/r2(m + 3) ≤ γ.

Using the above estimate on δ we next show that the lower bound on f ′(δ) is essen-
tially given by the size of H ′

m(m). With m−, m+ ∈ N2 denoting the nearest left and right
neighbors of m we have m− ≤ m − 1 and m+ ≥ m + 1, and thus

1

(n − (m + δ))2
= 1 + O(γ )

(n − m)2

holds for all n ∈ N2 \ {m} and |δ| ≤ γ . Thus,

min|δ|≤γ
f ′(δ) = min|δ|≤γ

H ′
m(m + δ) = H ′

m(m)(1 + O(γ ))

for |δ| ≤ γ . Hence we may take A = r2(m) and B = H ′
m(m + δ0)(1 + O(γ )) in Lemma

6; on squaring the estimate δ0 ≤ √
A/B we find that

δ20 H ′
m(m + δ0) ≤ (1 + O(γ ))r2(m)

(for γ small). In particular, λ = m + δ0 is a new eigenvalue, and

H ′
m(λ) ≤ r2(m)

(m − λ)2
· (1 + O(γ )).

The proof of Proposition 11 is thus concluded.

Remark 12. The above argument in fact gives the following: if r2(m+h) ≥ R ·r2(m) > 0
for some 0 < h < H , then (again for |δ| < 1/10),

f ′(δ) � R · r2(m)

H2

and thus there exists a nearby new eigenvalue λ = m + δ0 with |δ0| � H/
√

R, and

H ′
m(λ) ≤ r2(m)

(m − λ)2

(
1 + O

(
H√

R

))
.
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For γ ∈ (0, 1/10) letMγ be the set given by Lemma 7; givenm ∈ Mγ let λm denote
the nearby new eigenvalue with the above properties (in particular, |λm − m| ≤ γ , and
(35) holds for λ = λm), and defineΛγ := {λm : m ∈ Mγ }. Taking γk = 1/k for integer
k > 10, we find that Λγk+1 ⊂ Λγk , hence there exists an infinite sequence

Λ0 = {λm1 < λm2 < · · · }
such that λmi ∈ Λγ j for i ≥ j .

A standard compactness argument then gives the following: there exists an infinite
subsequence Λ′ ⊂ Λ0 such that

Ω(m) :=
{
v/|v| : v ∈ Z

2, |v|2 = m
}

converges to a limit multiset Ω(∞) of bounded cardinality as λm ∈ Λ′ tends infinity
(in particular, we may assume that |Ω(m)| = r2(m), is constant). Moreover, since
λmi ∈ Λγ j for i ≥ j if λmi ∈ Λ0, and we have passed to a subsequence of Λ0, we find
that for all k ∈ Z

+, there exists tk ∈ Z
+ such that

Λ′ ∩ (tk,∞) ⊂ Λγk . (36)

Wemay also assume that limλ→∞, λ∈Λ′ 〈Op( f )gλ, gλ〉 = ν∞( f ) for some semiclassical
measure ν∞ by passing to a further subsequence.

Remark 13. Note that a limit of sets, say of fixed cardinality, might be a multiset. E.g.,
in our construction, the Wigner measures have singular (momentum) support in the
two directions (n,±1)/

√
n2 + 1; letting n → ∞ we obtain a measure with support on

(1, 0) and “twice the mass”. In particular, the support set of Ω(∞) might have smaller
cardinality than limn |Ω(n)|.

5.1. Singular momentum marginals. It is now straightforward to exhibit singular
momentum marginals—for any fixed positive f ∈ C∞(S1) we show that

lim
λ→∞, λ∈Λ′〈Op( f )gλ, gλ〉 ≥ 1/2

|Ω(∞)|
∑

ξ∈Ω(∞)

f (ξ) = 1

2
· μΩ(∞)( f ). (37)

Let

W f (n) :=
∑

|v|2=n

f

(
v

|v|
)

.

We start with an upper bound on the L2 norm of Gλ valid for λ ∈ Λ′ and λ → ∞. By
definition of Gλ, its L2 norm is [recall that λ = λm = m + δ, and that λ ∈ Λγk for any
k provided that λ ∈ Λ′ is sufficiently large; cf. (36)]

‖Gλ‖2 =
∑

n∈N2

r2(n)

|n − λ|2 = r2(m)

|m − λ|2 +
∑

n∈N2
n �=m

r2(n)

(n − λ)2

= r2(m)

|m − λ|2 + H ′
m(m + δ) +

∑

n �∈I (λ)

r2(n)

|n − λ|2

≤ (2 + O(γk))
r2(m)

|m − λ|2 + O(
λε

λη
) = (2 + o(1))

r2(m)

|m − λ|2 + o(1) (38)
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as λ → ∞, where the last inequality follows from Proposition 11, and that r2(n) �ε nε.
Recalling that f is positive (and that |m − λ| = O(1)), this implies that, as λ → ∞,

〈Op( f )gλ, gλ〉 =
∑

n∈N2

W f (n)

(n−λ)2∑
n∈N2

r2(n)

(n−λ)2

≥
W f (m)

(m−λ)2

(2 + o(1)) r2(m)

(m−λ)2
+ o(1)

= 1

2 + o(1)
· W f (m)

r2(m) + o(1)

= 1 + o(1)

2 · |Ω(∞)|
∑

ξ∈Ω(∞)

f (ξ) = 1 + o(1)

2
· μΩ(∞)( f ). (39)

Remark 14. Wenote that the above construction places mass at least 1/2 on the (momen-
tum) singular part.

Remark 15. A slightly more general statement follows by the same arguments used
above. Namely, given M, R, H > 0, suppose thatM ⊂ N2 is a subset such that for all
m ∈ M, r2(m) < M , and r2(m + h) > R · r2(m) for some integer h ∈ (0, H). If we let
Λ(M) be the corresponding set of new eigenvalues given by Remark 12, we then have

〈Op( f )gλ, gλ〉 ≥ 1/2

|Ω(m)|
∑

ξ∈Ω(m)

f (ξ)

(
1 + O

(
H√

R

))

= 1

2
· μΩ(m)( f )

(
1 + O

(
H√

R

))
, for λ ∈ Λ(M). (40)

5.2. Non-uniform quantum limits. To simplify the notation, we use the following con-
vention throughout this section: letw := (0, 2) ∈ Z

2, and for λ a fixed “new” eigenvalue,
and v ∈ Z

2 define

c(v) := cλ(v) = 1

|v|2 − λ
, C(v,w) := c(v)c(v + w).

By the definition of Gλ and Op(a) we see that using the new notation (cf. (9), (12))

Op(ew)Gλ(x, x0) =
∑

v∈Z2

c(v)eiv·x0ei(v+w)·x ,

and therefore

〈Op(ew)gλ, gλ〉 = e−iw·x0 · ∑
v∈Z2 c(v)c(v + w)

∑
m∈N2

r2(m)

(m−λ)2

= e−iw·x0 · ∑
v∈Z2 C(v,w)

∑
m∈N2

r2(m)

(m−λ)2

(41)

As we aim to show that (41) is bounded from below in absolute value, we assume that
x0 = 0 for simplicity. We will show that the sum in the numerator is essentially bounded
from below by two terms in the sum, namely v such |v| = |v + w|.

In what follows, λ = λm = m + δ ∈ Λ′ (where |δ| ≤ γk = 1/k = o(1) as λ → ∞),
and m = n2 + 1 for n ∈ Z

+. Given such an n we define a vector u ∈ Z
2, with |u|2 = m,

by

u := (n,−1).
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Fig. 1. An illustration of the setting of Lemma 16. For m = 402 + 1 and (say) δ = 0.1, only the lattice
points with C(v, w) < 0 and the points (±40, ±1) are plotted. On the right plot we zoomed around the point
(40,0). Notice that the only points near (40, ±1) lie on the line x = 40. We remark that the condition that
|〈v, w〉| ≤ √

R in Lemma 16 here corresponds to |y| ≤ √
40/2 ∼ 3.166

For notational convenience, set R = √
λ, and let

Cm := {v ∈ R
2 : |v|2 = m}

denote the circle of radius
√

m centered at the origin. Define

AR = AR,w := {v ∈ R
2 : |v| ∈ [R − |w|, R + |w|]}

as the annulus of width 2|w| containing Cm , and let

A∗
R = A∗

R,w := {v ∈ R
2 : |v| ∈ [R − |w|, R + |w|], |v|2 �= m, |v + w|2 �= m}.

The following Lemma will allow us to bound the contribution of the negative terms
in the sum in the numerator of the right hand side of (41). We refer the reader to Fig. 1
for an illustration of the following Lemma.

Lemma 16. If C(v,w) < 0 for v ∈ Z
2, then |v| ∈ [R − |w|, R + |w|]. Furthermore, if

we in addition have |〈v,w〉| ≤ √
R, then v = (±n, y) with −3 ≤ y ≤ 1 provided that

R is sufficiently large.
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Proof. Since C(v,w) < 0 if and only if the line segment joining v and v +w intersects
CR , the first assertion follows from the triangle inequality.

We now write v = (x, y) for x, y ∈ Z.
First case: If |x | ≥ n + 1, then

|v|2 − λ ≥ x2 − λ ≥ (n + 1)2 − λ = n2 + 2n + 1 − λ ≥ m + 1 − λ ≥ 1 − δ

and similarly |v + w|2 − λ ≥ 1 − δ. Recalling that |δ| < γ ≤ 1/10 we find that
C(v,w) > 0.
Second case: Assume that |x | ≤ n − 1. We note that C(v,w) < 0 implies that either
|v|2 > λ, or that |v + w|2 > λ.

Now, if |v|2 > λ, then

|v|2 = x2 + y2 > λ = m + δ = n2 + 1 + δ

so,

y2 > n2 + 1 + δ − (n − 1)2 ≥ n.

Consequently, |y| ≥ √
n >

√
R/2, hence |〈v,w〉| = 2|y| >

√
R and the claim is

vacuous.
On the other hand, if |v + w|2 > λ then, as x2 ≤ (n − 1)2,

|v + w|2 = x2 + (y + 2)2 > λ = m + δ = n2 + 1 + δ

so |y| ≥ √
n, and as before |〈v,w〉| >

√
R; again the claim is vacuous.

Third case: For |x | = n, since |δ| = |λ − m| < 1/10 we find that

|v|2 − λ = n2 + y2 − λ = m − λ + y2 − 1 = −δ + y2 − 1,

and

|v + w|2 − λ = n2 + (y + 2)2 − λ = −δ + (y + 2)2 − 1

so both c(v), c(v + w) are positive for v = (±n, y) if y ≤ −4 or y ≥ 2.

In light of Lemma 16, we consider the following three sets of points v ∈ Z
2:

V1 :=
{
v ∈ Z

2 : v = (±n, y),−3 ≤ y ≤ 1
}

V2 :=
{
v ∈ Z

2 : C(v,w) < 0, |v|2,|v+w|2 �=m,√
R≤|〈v,w〉|≤3R

}

V3 :=
{
v ∈ Z

2 : C(v,w) < 0, |v|2=m or |v+w|2=m,√
R≤|〈v,w〉|≤3R

}
.

Notice that these three sets, for R sufficiently large, cover all v ∈ Z
2 such that

C(v,w) < 0, because if C(v,w) < 0, then |〈v,w〉| ≤ (R + |w|)|w| < 3R for R > 4.
Before we proceed to the rest of the proof, we explain first how the contribution from
each set is treated. We also refer the reader to Fig. 3 for an illustration of the case of
v ∈ V2, and to Fig. 2 for the case of v ∈ V1. For v ∈ V1, we show that the main
contribution of C(v,w) comes from v = (±n,−1) where c(v) = c(v + w) = 1/δ, and
for the other finitemembers either c(v) or c(v+w) is bounded, and hence the contribution
from these is bounded by � 1/δ. For v ∈ V3, although either c(v) or c(v + w) equals
1/δ, the second term is bounded by � 1/R, and so the contribution from all summands
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|v|2 = λ

u = (n,−1)

C(u, w) = 1
δ2

C(v, w) = O( 1
δ
)Σ

Fig. 2. The main contribution in Corollary 17 is seen here. The dashed lines connect points differing by
w = (0, 2). For v = u we have that C(u, w) = c(u)c(u + w) = 1

δ2
, and all other points v with C(v, w) < 0

contribute O( 1
δ
)

|v|2 = λ

v

v− w

v + w
v +w

v

v + 2w

C(v, w) + C(v − w, w) log2 B
B2

C(v + w, w) + C(v, w) log2 B 
B2

Fig. 3. An illustration of the “pairing off” in Lemma 18. For v ∈ V2, at least one of the terms C(v, w)+C(v +

w,w) or C(v, w) + C(v − w,w) is � log2 B
B2

is � 1/(Rδ). The most subtle treatment is for v ∈ V2: here neither c(v) nor c(v +w) are
as large as 1/δ, but as there are many summands we need some further cancellation. To
obtain this, when needed, we “pair off” negative terms C(v,w) with “nearby” positive
terms (see Fig. 3).

For ease of notation, we make the following definitions: For a finite set X ⊂ R,
define argminX (|x |) as the leftmost x ∈ X which minimizes |x |, and for v ∈ Z

2 and
w = (0, 2) as before, let

Nbrw(v) := {C(v,w), C(v − w,w) + C(v,w), C(v,w) + C(v + w,w)}
Sw(v) := argminNbrw(v)(|x |).
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Corollary 17. For λ = m + δ and |δ| small enough, as λ → ∞, we have

∑

v∈Z2

C(v,w) ≥ 2

δ2
+ O(

1

δ
) +

∑

v∈V2

Sw(v) (42)

Proof. We first notice that if |t | ≤ |〈v,w〉|
|w|2 , then only one sign change can occur for

|v + tw|2 −λ. In particular, for λ large enough (and hence also R = √
λ), if v ∈ V2 ∪ V3

and C(v,w) < 0 then both C(v − w,w), C(v + w,w) > 0. Also, as mentioned above,
by Lemma 16, if C(v,w) < 0 then v is in either V1, V2 or V3 for R large. Therefore,
after removing only positive terms, we find that

∑

v∈Z2

C(v,w) ≥
∑

v∈V1

C(v,w) +
∑

v∈V3

C(v,w) +
∑

v∈V2

Sw(v)

= 2
1∑

y=−3

C((n, y), w) +
∑

v∈V3

C(v,w) +
∑

v∈V2

Sw(v) (43)

Now, by definition of C(v,w), for the first sum we have that

1∑

y=−3

C((±n, y), w)

= 1

(−δ)2
+ 2

(
1

(3 − δ)(−1 − δ)
− 1

(8 − δ)δ

)
= 1

δ2
+ O

(
1

δ

)
. (44)

(note that when δ → 0, the dominant term 1/δ2 comes from the term y = −1).
For v ∈ V3 and |v|2 = m, we have |〈v,w〉| ≥ √

R, and so (recall that m − λ = −δ)

||v + w|2 − λ| = ||v|2 + 2〈v,w〉 + |w|2 − λ| = |2〈v,w〉 + |w|2 − δ| � √
R.

andC(v,w) � 1
δ
√

R
. Using a similar argument we get thatC(v,w) � 1

δ
√

R
if |v+w|2 =

m. Therefore, since r2(m) is bounded,

∑

v∈V3

C(v,w) �
∑

v∈V3

1

δ
√

R
� 1

δ
√

R

and (42) follows.

The contribution from v ∈ V2 is more subtle, and those v for which C(v,w) is not
very small are treated by pairing off negative summands with “nearby” positive ones,
thus getting some extra savings.

Lemma 18. If v ∈ V2, then Sv(w) � log2 |〈v,w〉|
|〈v,w〉|2 as R → ∞.

Proof. For notational convenience, we put B := Bv = |〈v,w〉|. After recalling that
v ∈ V2 implies that |〈v,w〉| ≥ R1/2, we split the proof into two cases.
First case: Here we assume that ||v|2 − λ| ≤ ||v + w|2 − λ|. If ||v|2 − λ| ≥ B/ log B,
then

|C(v,w)| = |c(v)c(v + w)| ≤ log2 B

B2 .
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and there is no need for “pairing off” the negative term with a positive one. We may
therefore assume that ||v|2 − λ| ≤ B/ log B. Now,

|v + w|2 − λ = |v|2 + 2〈v,w〉 + |w|2 − λ = |v|2 − λ ± 2B + |w|2
and similarly |v − w|2 − λ = |v|2 − λ − (±2B) + |w|2, hence
C(v,w) + C(v − w,w) = c(v) · c(v + w) + c(v − w) · c(v)

= 1

|v|2 − λ

(
2(|v|2 + |w|2 − λ)

(|v|2+2B+|w|2−λ)(|v|2−2B + |w|2 − λ)

)
.

(45)

(note that the two±2B terms above occur with opposite signs). Recalling the assumption
|v|2 �= m, together with |w|2 = 4, we find that ||v|2 − λ| ≥ 1/2 (note that |λ − m| ≤
δ ≤ 1/10 by our assumption on δ), and this together with (45) shows that

C(v,w) + C(v − w,w) � 1

(|v|2 + 2B + |w|2 − λ)(|v|2 − 2B + |w|2 − λ)
.

Since we assume that ||v|2 − λ| ≤ B/ log B, we find that

||v|2 ± 2B + |w|2 − λ| � B

and thus C(v,w) + C(v − w,w) � 1/B2.
Second case Here we assume that ||v|2 − λ| > ||v + w|2 − λ|. This case follows by a
similar argument, except for showing that

|c(v + w)(c(v) + c(v + 2w))| � log2 B

B2 .

Corollary 19. As R → ∞, we have
∑

v∈V2

Sw(v) =
∑

v∈A∗
R

C(v,w)<0
|〈v,w〉|∈[R1/2,3R]

Sw(v) = o(1).

Proof. Write
∑

v∈A∗
R

C(v,w)<0
|〈v,w〉|∈[R1/2,3R]

Sw(v)

=
∑

k∈N
R1/2≤2k<R/ log R

∑

v∈A∗
R

C(v,w)<0
|〈v,w〉|∈[2k ,2k+1)

Sw(v) +
∑

v∈A∗
R

C(v,w)<0
|〈v,w〉|∈[R/ log R,3R]

Sw(v) (46)

Since the number of lattice points in AR satisfying 〈v,w〉 ∈ I is O(|I ||w|) for any
interval I ⊂ [−R/ log R, R/ log R], we get by Lemma 18 that

∑

k∈N
R1/2≤2k<R/ log R

∑

v∈A∗
R

C(v,w)<0
|〈v,w〉|∈[2k ,2k+1)

Sw(v) �
∑

2k≥R1/2

2k
(

k

2k

)2

� 1

R1/2−ε
= o(1)
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and

∑

v∈A∗
R

C(v,w)<0
|〈v,w〉|∈[R/ log R,3R]

Sw(v) � R
log2 R

(R/ log R)2
= log4 R

R
= o(1)

5.2.1. Conclusion. Wecannowprove localization in position byproving that for f (x) =
ei〈x,w〉 ∈ C∞(T2),

lim
λ∈Λ′〈Op( f )gλ, gλ〉 = c > 0 (47)

By (41) (recall that we assumed that x0 = 0),

〈Op(ew)gλ, gλ〉 =
∑

v∈Z2 C(v,w)
∑

m∈N2

r2(m)

(m−λ)2

Recalling the notational convention that λ = λm = m + δ, where |δ| ≤ γ , corollaries 17
and 19 gives that

∑

v∈Z2

C(v,w) ≥ 2

δ2
+ O(

1

δ
) + o(1) ≥ 2

γ 2 + O(
1

γ
) + o(1) (48)

On the other hand, by Proposition 11,

∑

n∈N2

r2(n)

(n − λ)2
= r2(m)

(m − λ)2
+ H ′

m(λ) ≤ (2 + O(γ ))
r2(m)

(m − λ)2

and, on recalling that r2(m) is bounded, we find that for λ ∈ Λ′ tending to infinity (and
hence γ = o(1) since λ ∈ Λ′ implies that λ ∈ Λγk for any fixed k if λ is sufficiently
large), we have

〈Op(ew)gλ, gλ〉 ≥
2

γ 2 + O(
1

γ
)

(2 + O(γ ))
r2(m)

γ 2

= 1 + o(1)

r2(m)

which is uniformly bounded from below.

Remark 20. Since the set {v ∈ Z
2 : |v|2 = m} is invariant under v → −v,

and v = (a, b) → v′ = (b, a), the bound 〈Op(ew)gλ, gλ〉 ≥ 1+o(1)
r2(m)

holds for
w ∈ {(0,±2), (±2, 0)}.

We also note that the method of proof, with minor modifications, works for any
w ∈ Z

2 such that |w|2 is even.
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6. Proof of Theorem 3

Recall first the setting proved in Proposition 9: There exist an integer H ≥ 1 with the
property that for all sufficiently large R there exist an integer h ∈ (0, H2) such that

|{n ∈ N2 : n ≤ x, 0 < r2(n) � RH , r2(n + h) ≥ R · r2(n)}| �R x/(log x)H

as x → ∞.
As noted in Remark 12, if r2(m + h) ≥ R · r2(m) > 0 for some integer h such that

0 < h < H , then there exists a new eigenvalue λ = λm = m + δ0 with

δ0 � 2H/
√

R, H ′
m(λ) � r2(m)

(m − λ)2
.

Let Λ′′ = {λm} denote the sequence of new eigenvalues with the above property. Propo-
sition 9 then gives, upon choosing R sufficiently large, that the number of such m ≤ x
is � x/(log x)H , and the same holds for the counting function for Λ′′.

Now, if Λ′′′ ⊂ Λ′′ denotes any subset along which the semi-classical limit exists, the
argument in Sect. 5.1 shows, as mentioned in Remark 15 that the limit as λ ∈ Λ′′′ tends
to infinity gives rise to singular momentum marginals provided r2(m) is also bounded;
by the above construction r2(m) � RH .

A. Uniform Quantum Limits in Theorem 3

As before, given a nonzero w ∈ Z
2 it is enough to show the existence of a subset

Λ′′
w ⊂ Λ′′, of full relative density, such that

lim
λ→∞,λ∈Λ′′

w

〈Op(ew,k)gλ, gλ〉 = 0

where ew,k(x, ξ) = ei〈w,x〉 · e2π ikξ . More precisely, letting

Λ′′
flat := Λ′′ \ (∪w∈Z2\{0}(Λ′′ \ Λ′′

w) ∩ [tw,∞])) ,

weobtain a subsetΛ′′
flat ⊂ Λ′′ which has full relative density provided thatwe let tw ∈ Z

+

grow sufficiently quickly as |w| → ∞.
Following the arguments in [35] we define Λ′′

w ⊂ Λ′′ as follows. Fix θ ∈ (0, 1/3)
and δ ∈ (θ/2, 1/2 − θ). Given 0 �= w ∈ Z

2, let

Sw := {v ∈ Z
2 : |〈v,w〉| ≤ |v|2δ}.

Further, define the annulus

A(λ, L) := {v ∈ Z
2 : ||v|2 − λ| < L},

and put

Λ′′
w := {λ ∈ Λ′′ : A(λ, λδ) ∩ Sw = ∅}.

To conclude the proof, we next show thatΛ′′
w ⊂ Λ′′ indeed has the desired properties

(recall that |{λ ∈ Λ′′ : λ < X}| � X/(log X)A for some A > 1).
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Proposition 21. There exists δ′ > 0 such that for all w �= 0

|{λ ∈ Λ′′ \ Λ′′
w : λ ≤ X}| � X1−δ′

/|w| (49)

as X → ∞. Moreover, as λ ∈ Λ′′
w tends to infinity,

|〈Op(ew,k)gλ, gλ〉| → 0.

Proof. Take L = λδ and define a truncated Green’s function

Gλ,L(x) :=
∑

v∈A(λ,L)

eiv·x

|v|2 − λ

and its L2 normalization gλ,L := Gλ,L/‖Gλ,L‖2. By Lemmas 5.1 and 5.2 in [35], we
then have ‖gλ − gλ,L‖2→ 0 and

|〈Op(ew,k)gλ, gλ〉 − 〈Op(ew,k)gλ,L , gλ,L〉| → 0

as λ ∈ Λ′′
w tends to infinity. (Note that λ ∈ Λ′′

w ⊂ Λ′′ implies that ‖Gλ‖22≥ r2(m)/(m −
λ)2 � 1). It is thus enough to show that

|〈Op(ew,k)gλ,L , gλ,L〉| → 0

for λ ∈ Λw tending to infinity. Since w �= 0, [27, Section 2.2] implies that

|〈Op(ew,k)gλ,L , gλ,L 〉| ≤
∑

v∈Z2

|̂gλ,L(v) · ĝλ,L(v − w)|

� 1

‖Gλ,L‖22
∑

v∈A(λ,L)

1

||v|2 − λ| · 1

||v − w|2 − λ|

which, by the proof of [35, Proposition 7.1], tends to zero.
Finally, (49) follows from [35, Equation 6.4].
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38. Šeba, P., Życzkowski, K.: Wave chaos in quantized classically nonchaotic systems. Phys. Rev. A
(3) 44(6), 3457–3465 (1991)

39. Shigehara, T.: Conditions for the appearance of wave chaos in quantum singular systems with a pointlike
scatterer. Phys. Rev. E 50, 4357–4370 (1994)

40. Šnirel’man, A.I.: Ergodic properties of eigenfunctions. Uspehi Mat. Nauk. 29(6(180)), 181–182 (1974)
41. Soundararajan, K.: Quantum unique ergodicity for SL2(Z)\H. Ann. Math. (2) 172(2), 1529–1538 (2010)
42. Tanner, G.: How chaotic is the stadium billiard? A semiclassical analysis. J. Phys. A: Math.

Gen. 30(8), 2863 (1997)
43. Ueberschär, H.: Quantum chaos for point scatterers on flat tori. Philos. Trans. R. Soc. Lond. Ser. A Math.

Phys. Eng. Sci. 372(2007), 20120509, 12 (2014)
44. Yesha, N.: Eigenfunction statistics for a point scatterer on a three-dimensional torus. Ann. Henri

Poincaré 14(7), 1801–1836 (2013)
45. Yesha, N.: Quantum ergodicity for a point scatterer on the three-dimensional torus. Annales Henri

Poincaré 16(1), 1–14 (2015)
46. Zelditch, S.: Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math.

J. 55(4), 919–941 (1987)

Communicated by S. Zelditch


	Superscars for Arithmetic Toral Point Scatterers
	Abstract:
	1 Introduction
	1.1 Toral point scatterers
	1.2 Discussion
	1.3 Scarring and QUE for some other models
	1.4 Outline of the proofs

	2 Background
	2.1 Point scatterers on the flat torus
	2.1.1 Basic definitions and properties.
	2.1.2 Strong coupling.
	2.1.3 Quantization of observables.

	2.2 Number theoretic background
	2.2.1 Integers that are sums of 2 or 3 squares.

	2.3 Sieve method results

	3 Auxiliary Results
	3.1 Nearby zeros
	3.2 Sequences of sums of two squares

	4 Proof of Theorem 1
	5 Proof of Theorem 2
	5.1 Singular momentum marginals
	5.2 Non-uniform quantum limits
	5.2.1 Conclusion.


	6 Proof of Theorem 3
	A Uniform Quantum Limits in Theorem 3
	Acknowledgements.
	References




