Skip to main content
Log in

Weakly Asymmetric Non-Simple Exclusion Process and the Kardar–Parisi–Zhang Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We analyze a class of non-simple exclusion processes and the corresponding growth models by generalizing the discrete Cole–Hopf transformation of Gärtner (Stoch Process Appl, 27:233–260, 1987). We identify the main non-linearity and eliminate it by imposing a gradient type condition. For hopping range at most 3, using the generalized transformation, we prove the convergence of the exclusion process toward the Kardar–Parisi–Zhang (kpz) equation. This is the first universality result under the weak asymmetry concerning interacting particle systems. While this class of exclusion processes are not explicitly solvable, under the weak asymmetry we obtain the exact one-point limiting distribution for the step initial condition by using the previous result of Amir et al. (Commun Pure Appl Math, 64(4): 466–537, 2011) and our convergence result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberts T., Khanin K., Quastel J.: The intermediate disorder regime for directed polymers in dimension 1 + 1. Ann. Probab. 42(3), 1212–1256 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amir G., Corwin I., Quastel J.: Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions. Commun. Pure Appl. Math. 64(4), 466–537 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Assing S.: A rigorous equation for the Cole–Hopf solution of the conservative KPZ equation. Stoch Partial Differ Equ Anal Comput 1(2), 365–388 (2013)

    MATH  MathSciNet  Google Scholar 

  4. Balázs, M., Komjáthy, J., Seppäläinen, T.: Microscopic concavity and fluctuation bounds in a class of deposition processes. In: Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, vol. 48, pp. 151–187. Institut Henri Poincaré, Paris (2012)

  5. Bertini L., Cancrini N.: The stochastic heat equation: Feynman–Kac formula and intermittence. J. Stat. Phys. 78(5-6), 1377–1401 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Bertini L., Bertini L.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183(3), 571–607 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Borodin A., Borodin A.: Macdonald processes. Probab. Theory Relat. Fields 158(1-2), 225–400 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Borodin A., Corwin I., Ferrari P.: Free energy fluctuations for directed polymers in random media in 1 + 1 dimension. Commun. Pure Appl. Math. 67(7), 1129–1214 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  9. Corwin I.: The Karder–Parisi–Zhang equation and universality class. Random Matrices Theory Appl. 01(01), 1130001 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Forster D., Nelson D.R., Stephen M.J.: Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A 16(2), 732–749 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  11. Gärtner J.: Convergence towards Burgers equation and propagation of chaos for weakly asymmetric exclusion processes. Stoch. Process. Appl. 27, 233–260 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gonçalves, P., Jara, M., Sethuraman, S.: A stochastic Burgers equation from a class of microscopic interactions. Ann. Probab. 43(1), 286–338 (2015)

  13. Hairer M.: Solving the KPZ equation. Ann. Math. 178(2), 559–664 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Johansson K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209(2), 437–476 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Johansson K.: Discrete polynuclear growth and determinantal processes. Commun. Math. Phys. 242(1–2), 277–329 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Kardar M., Parisi G., Zhang Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56(9), 889–892 (1986)

    Article  MATH  ADS  Google Scholar 

  17. Kipnis C., Landim C.: Scaling Limits of Interacting Particle Systems, vol. 320. Springer, New York (1999)

    Book  MATH  Google Scholar 

  18. Krug J., Meakin P., Halpin-Healy T.: Amplitude universality for driven interfaces and directed polymers in random media. Phys. Rev. A 45(2), 638 (1992)

    Article  ADS  Google Scholar 

  19. Liggett T.M.: Interacting Particle Systems. Springer, New York (2005)

    MATH  Google Scholar 

  20. Mueller C.: On the support of solutions to the heat equation with noise. Stochastics 37(4), 225–245 (1991)

    MATH  MathSciNet  Google Scholar 

  21. Prähofer M., Spohn H.: Scale invariance of the png droplet and the airy process. J. Stat. Phys. 108(5–6), 1071–1106 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Quastel, J.: Introduction to KPZ. http://math.arizona.edu/~mathphys/school_2012/IntroKPZ-Arizona.pdf (2012) (unpublished)

  23. Sasamoto T., Spohn H.: Exact height distributions for the KPZ equation with narrow wedge initial condition. Nucl. Phys. B 834(3), 523–542 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Spohn, H.: KPZ scaling theory and the semi-discrete directed polymer model. In: Random Matrix Theory, Interacting Particle Systems and Integrable Systems, vol. 65. Cambridge University Press, Cambridge (2014)

  25. Tracy C.A., Widom H.: A Fredholm determinant representation in ASEP. J. Stat. Phys. 132(2), 291–300 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Tracy C.A., Widom H.: Integral formulas for the asymmetric simple exclusion process. Commun. Math. Phys. 279(3), 815–844 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Tracy C.A., Widom H.: Asymptotics in ASEP with step initial condition. Commun. Math. Phys. 290(1), 129–154 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Tracy C.A., Widom H.: Erratum to: Integral formulas for the asymmetric simple exclusion process. Commun. Math. Phys. 304(3), 875–878 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Walsh, J.B.: An introduction to stochastic partial differential equations. In: École d’Été de Probabilités de Saint Flour XIV—1984. Lecture Notes in Mathematics, vol. 1180, pp. 265–439. Springer, Berlin (1986)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Cheng Tsai.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dembo, A., Tsai, LC. Weakly Asymmetric Non-Simple Exclusion Process and the Kardar–Parisi–Zhang Equation. Commun. Math. Phys. 341, 219–261 (2016). https://doi.org/10.1007/s00220-015-2527-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2527-1

Keywords

Navigation