Skip to main content
Log in

Multi-Scale Jacobi Method for Anderson Localization

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A new KAM-style proof of Anderson localization is obtained. A sequence of local rotations is defined, such that off-diagonal matrix elements of the Hamiltonian are driven rapidly to zero. This leads to the first proof via multi-scale analysis of exponential decay of the eigenfunction correlator (this implies strong dynamical localization). The method has been used in recent work on many-body localization (Imbrie in On many-body localization for quantum spin chains, arXiv:1403.7837, 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman M.: Localization at weak disorder: some elementary bounds. Rev. Math. Phys. 6, 1163–1182 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aizenman M., Graf G.M.: Localization bounds for an electron gas. J. Phys. A. Math. Gen. 31, 6783–6806 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Aizenman M., Molchanov S.: Localization at large disorder and at extreme energies: an elementary derivation. Commun. Math. Phys. 157, 245–278 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Aizenman M., Schenker J.H., Friedrich R.M., Hundertmark D.: Finite-volume fractional-moment criteria for Anderson localization. Commun. Math. Phys. 224, 219–253 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Bellissard J., Lima R., Scoppola E.: Localization in ν-dimensional incommensurate structures. Commun. Math. Phys. 88, 465–477 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Bellissard J., Lima R., Testard D.: A metal-insulator transition for the almost Mathieu model. Commun. Math. Phys. 88, 207–234 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Brockett R.W.: Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems. Linear Algebra Appl. 146, 79–91 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brydges D., Spencer T.: Self-avoiding walk in 5 or more dimensions. Commun. Math. Phys. 97, 125–148 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Chulaevsky V.: Direct scaling analysis of localization in single-particle quantum systems on graphs with diagonal disorder. Math. Phys. Anal. Geom. 15, 361–399 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chulaevsky V.: From fixed-energy localization analysis to dynamical localization: An elementary path. J. Stat. Phys. 154, 1391–1429 (2014)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Chulaevsky V., Dinaburg E.: Methods of KAM-theory for long-range quasi-periodic operators on Z ν. Pure point spectrum. Commun. Math. Phys. 153, 559–577 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Chulaevsky V., Sinai Y.: The exponential localization and structure of the spectrum for 1D quasi-periodic discrete Schrödinger operators. Rev. Math. Phys. 3, 241–284 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Damanik D., Stollmann P.: Multi-scale analysis implies strong dynamical localization. Geom. Funct. Anal. 11, 11–29 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Datta N., Fernández R., Fröhlich J.: Low-temperature phase diagrams of quantum lattice systems. I. Stability for quantum perturbations of classical systems with finitely-many ground states. J. Stat. Phys. 84, 455–534 (1996)

    Article  MATH  ADS  Google Scholar 

  15. Datta N., Fernández R., Fröhlich J.: Effective Hamiltonians and phase diagrams for tight-binding models. J. Stat. Phys. 96, 545–611 (1999)

    Article  MATH  ADS  Google Scholar 

  16. Deift P., Nanda T., Tomei C.: Ordinary differential equations and the symmetric eigenvalue problem. SIAM J. Numer. Anal. 20, 1–22 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Eliasson L.: Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum. Acta Math. 179, 153–196 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Eliasson, L.: Perturbations of linear quasi-periodic system. In: Marmi, S., Yoccoz, J. (eds.) Dynamical Systems and Small Divisors, pp. 1–60. Springer, Berlin (2002)

  19. Evans L.C., Gariepy R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  20. Fröhlich J., Spencer T.: Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys. 88, 151–184 (1983)

    Article  MATH  ADS  Google Scholar 

  21. Germinet F., De Bièvre S.: Dynamical localization for discrete and continuous random Schrödinger operators. Commun. Math. Phys. 194, 323–341 (1998)

    Article  MATH  ADS  Google Scholar 

  22. Germinet F., Klein A.: Bootstrap multiscale analysis and localization in random media. Commun. Math. Phys. 222, 415–448 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Głazek S., Wilson K.: Renormalization of Hamiltonians. Phys. Rev. D 48, 5863–5872 (1993)

    Article  ADS  Google Scholar 

  24. Grote I., Körding E., Wegner F.: Stability analysis of the Hubbard model. J. Low Temp. Phys. 126, 1385–1409 (2002)

    Article  ADS  Google Scholar 

  25. Hundertmark D.: On the time-dependent approach to Anderson localization. Math. Nachr. 214, 25–38 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Imbrie, J.Z.: On many-body localization for quantum spin chains. arXiv:1403.7837 (2014)

  27. Klein A., Molchanov S.: Simplicity of eigenvalues in the Anderson model. J. Stat. Phys. 122, 95–99 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Martinelli F., Scoppola E.: Introduction to the mathematical theory of Anderson localization. La Riv. Del Nuovo Cim. 10, 1–90 (1987)

    Article  MathSciNet  Google Scholar 

  29. Minami N.: Local fluctuation of the spectrum of a multidimensional Anderson tight binding model. Commun. Math. Phys. 177, 709–725 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Sinai Y.: Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential. J. Stat. Phys. 46, 861–909 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  31. Sleijpen G., van der Vorst H.: A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM Rev. 42, 267–293 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  32. Wegner F.: Flow equations and normal ordering: a survey. J. Phys. A. Math. Gen. 39, 8221–8230 (2006)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Z. Imbrie.

Additional information

Communicated by M. Salmhofer

This research was conducted in part while the author was visiting the Institute for Advanced Study in Princeton, supported by The Fund for Math and The Ellentuck Fund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imbrie, J.Z. Multi-Scale Jacobi Method for Anderson Localization. Commun. Math. Phys. 341, 491–521 (2016). https://doi.org/10.1007/s00220-015-2522-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2522-6

Keywords

Navigation