Skip to main content
Log in

A Priori Bound on the Velocity in Axially Symmetric Navier–Stokes Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let v be the velocity of Leray–Hopf solutions to the axially symmetric three-dimensional Navier–Stokes equations. Under suitable conditions for initial values, we prove the following a priori bound

$$|v(x, t)| \le \frac{C |\ln r|^{1/2}}{r^2}, \qquad 0 < r \le 1/2,$$

where r is the distance from x to the z axis, and C is a constant depending only on the initial value. This provides a pointwise upper bound (worst case scenario) for possible singularities, while the recent papers (Chiun-Chuan et al., Commun PDE 34(1–3):203–232, 2009; Koch et al., Acta Math 203(1):83–105, 2009) gave a lower bound. The gap is polynomial order 1 modulo a half log term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, C.-C., Strain, R.M., Tsai, T.-P., Yau, H.-T.: Lower bound on the blow-up rate of the axisymmetric Navier–Stokes equations. Int. Math Res. Notices 8, 31 (2008) (artical ID rnn016)

  2. Ladyzhenskaya, O.A.: Unique global solvability of the three-dimensional Cauchy problem for the Navier–Stokes equations in the presence of axial symmetry. Zap. Naucn. Sem. Leningrad. Otdel. Math. Inst. Steklov. (LOMI) 7, 155–177 (Russian) (1968)

  3. Ukhovskii M.R., Yudovich V.I.: Axially symmetric flows of ideal and viscous fluids filling the whole space. J. Appl. Math. Mech. 32, 52–61 (1968)

    Article  MathSciNet  Google Scholar 

  4. Leonardi S., Malek J., Necas J., Porkorny M.: On axially symmetric flows in \({\mathbb{R}^3}\). Z. Anal. Anwendungen 18, 639–649 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen C.-C., Strain R.M., Tsai T.-P., Yau H.-T.: Lower bound on th blow-up rate of the axisymmetric Navier–Stokes equations II. Commun. P.D.E. 34(1–3), 203–232 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Koch G., Nadirashvili N., Seregin G., Sverak V.: Liouville theorems for the Navier–Stokes equations and applications. Acta Math. 203(1), 83–105 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Seregin G., Sverak V.: On type I singularities of the local axi-symmetric solutions of the Navier–Stokes equations. Commun. P.D.E. 34(1–3), 171–201 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lei Z., Zhang Q.S.: A Liouville theorem for the axially-symmetric Navier–Stokes equations. J. Funct. Anal. 261, 2323–2345 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lei Z., Zhang Q.S.: Structure of solutions of 3D Axi-symmetric Navier–Stokes Equations near maximal points. Pac. J. Math. 254(2), 335–344 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Loftus J.B., Zhang Q.S.: A priori bounds for the vorticity of axially symmetric solutions to the Navier–Stokes equations. Adv. Differ. Equ. 15(5–6), 531–560 (2010)

    MATH  MathSciNet  Google Scholar 

  11. Caffarelli L., Kohn R., Nierenberg L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Neustupa J., Pokorny M.: An interior regularity criterion for an axially symmetric suitable weak solution to the Navier–Stokes equations. J. Math. Fluid Mech. 2, 381–399 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Jiu Q., Xin Z.: Some Regularity Criteria on Suitable Weak Solutions of the 3-D Incompressible Axisymmetric Navier–Stokes Equations. Lectures on partial differential equations. New Stud. Adv. Math., vol. 2, pp. 119–139. Int. Press, Somerville (2003)

    MATH  Google Scholar 

  14. Chae D., Lee J.: On the regularity of the axisymmetric solutions of the Navier–Stokes equations. Math. Z. 239, 645–671 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Tian G., Xin Z.: One-point singular solutions to the Navier–Stokes equations. Topol. Methods Nonlinear Anal. 11, 135–145 (1998)

    MATH  MathSciNet  Google Scholar 

  16. Hou T.Y., Li C.: Dynamic stability of the 3D axi-symmetric Navier–Stokes equations with swirl. Commun. Pure Appl. Math. 61, 661–697 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hou T.Y., Lei Z., Li C.: Global reuglarity of the 3D axi-symmetric Navier–Stokes equations with anisotropic data. Commun. P.D.E. 33, 1622–1637 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Zhang Q.S.: A strong regularity result for parabolic equations. Commun. Math. Phys. 244, 245–260 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Hou T.Y., Li C.: Global Well-Posedness of the viscous Boussinesq equations. Discrete Contin Dyn Syst Ser A 12(1), 1–12 (2005)

    MATH  MathSciNet  Google Scholar 

  20. Kozono H., Taniuchi Y.: Bilinear estimates in BMO and the Navier–Stokes equations. Math. Z. 235(1), 173–194 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jiu, Q., Xin, Z.: On Liouville Theorems and Global Regularity to the 3-D Incompressible Axisymmetric Navier–Stokes Equations. arXiv:1501.02412

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi S. Zhang.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Z., Navas, E.A. & Zhang, Q.S. A Priori Bound on the Velocity in Axially Symmetric Navier–Stokes Equations. Commun. Math. Phys. 341, 289–307 (2016). https://doi.org/10.1007/s00220-015-2496-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2496-4

Keywords

Navigation