Skip to main content
Log in

Associative Algebraic Approach to Logarithmic CFT in the Bulk: The Continuum Limit of the \({\mathfrak{gl}(1|1)}\) Periodic Spin Chain, Howe Duality and the Interchiral Algebra

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop in this paper the principles of an associative algebraic approach to bulk logarithmic conformal field theories (LCFTs). We concentrate on the closed \({\mathfrak{gl}(1|1)}\) spin-chain and its continuum limit—the \({c=-2}\) symplectic fermions theory—and rely on two technical companion papers, Gainutdinov et al. (Nucl Phys B 871:245–288, 2013) and Gainutdinov et al. (Nucl Phys B 871:289–329, 2013). Our main result is that the algebra of local Hamiltonians, the Jones–Temperley–Lieb algebra JTL N , goes over in the continuum limit to a bigger algebra than \({\boldsymbol{\mathcal{V}}}\), the product of the left and right Virasoro algebras. This algebra, \({\mathcal{S}}\)—which we call interchiral, mixes the left and right moving sectors, and is generated, in the symplectic fermions case, by the additional field \({S(z,\bar{z})\equiv S_{\alpha\beta} \psi^\alpha(z)\bar{\psi}^\beta(\bar{z})}\), with a symmetric form \({S_{\alpha\beta}}\) and conformal weights (1,1). We discuss in detail how the space of states of the LCFT (technically, a Krein space) decomposes onto representations of this algebra, and how this decomposition is related with properties of the finite spin-chain. We show that there is a complete correspondence between algebraic properties of finite periodic spin chains and the continuum limit. An important technical aspect of our analysis involves the fundamental new observation that the action of JTL N in the \({\mathfrak{gl}(1|1)}\) spin chain is in fact isomorphic to an enveloping algebra of a certain Lie algebra, itself a non semi-simple version of \({\mathfrak{sp}_{N-2}}\). The semi-simple part of JTL N is represented by \({U \mathfrak{sp}_{N-2}}\), providing a beautiful example of a classical Howe duality, for which we have a non semi-simple version in the full JTL N image represented in the spin-chain. On the continuum side, simple modules over \({\mathcal{S}}\) are identified with “fundamental” representations of \({\mathfrak{sp}_\infty}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rohsiepe, F.: On reducible but indecomposable representations of the Virasoro algebra. arXiv:hep-th/9611160

  2. Gaberdiel M.: Fusion in conformal field theory as the tensor product of the symmetry algebra. Int. J. Mod. Phys. A 9, 4619 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Gaberdiel M., Kausch H.: Indecomposable fusion products. Nucl. Phys. B 477, 293–318 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  4. Mathieu P., Ridout D.: From percolation to logarithmic conformal field theory. Phys. Lett. B 657, 120 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Eberle H., Flohr M.: Virasoro representations and fusion for general augmented minimal models. J. Phys. A 39, 15245–15286 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Pearce P., Rasmussen J., Zuber J.B.: Logarithmic minimal models. J. Stat. Mech. 0611, 017 (2006)

    MathSciNet  Google Scholar 

  7. Read N., Saleur H.: Associative-algebraic approach to logarithmic conformal field theories. Nucl. Phys. B 777, 316 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Pasquier V., Saleur H.: Common structures between finite systems and conformal field theories through quantum groups. Nucl. Phys. B 330, 523 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  9. Martin P.P.: Potts Models and Related Problems in Statistical Mechanics. World Scientific, Singapore (1991)

    Book  MATH  Google Scholar 

  10. Read N., Saleur H.: Enlarged symmetry algebras of spin chains, loop models, and S-matrices. Nucl. Phys. B 777, 263 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Rasmussen J., Pearce P.: Fusion algebras of logarithmic minimal models. J. Phys. A 40, 13711–13734 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Kytölä K., Ridout D.: On staggered indecomposable Virasoro modules. J. Math. Phys. 50, 123503 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Feigin B.L., Gainutdinov A.M., Semikhatov A.M., Tipunin I.Yu.: Kazhdan–Lusztig correspondence for the representation category of the triplet W-algebra in logarithmic CFT. Theor. Math. Phys. 148, 1210–1235 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Feigin B.L., Gainutdinov A.M., Semikhatov A.M., Tipunin I.Yu.: Kazhdan–Lusztig-dual quantum group for logarithmic extensions of Virasoro minimal models. J. Math. Phys. 48, 032303 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Bushlanov P.V., Feigin B.L., Gainutdinov A.M., Tipunin I.Yu.: Lusztig limit of quantum \({s\ell(2)}\) at root of unity and fusion of (1, p) Virasoro logarithmic minimal models. Nucl. Phys. B 818 [FS], 179–195 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Gaberdiel M., Runkel I.: From boundary to bulk in logarithmic CFT. J. Phys. A 41, 075402 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Gaberdiel M., Runkel I., Wood S.: A modular invariant bulk theory for the \({c=0}\) triplet model. J. Phys. A 44, 015204 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Kausch H.G.: Extended conformal algebras generated by a multiplet of primary fields. Phys. Lett. B 259, 448 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  19. Feigin B.L., Gainutdinov A.M., Semikhatov A.M., Tipunin I.Yu.: Logarithmic extensions of minimal models: characters and modular transformations. Nucl. Phys. B 757, 303–343 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Saleur H., Schomerus V.: The \({GL(1|1)}\) WZW model: from supergeometry to logarithmic CFT. Nucl. Phys. B 734, 221–245 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Saleur H., Schomerus V.: On the \({SU(2|1)}\) WZW model and its statistical mechanics applications. Nucl. Phys. B 775, 312 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Gainutdinov A.M., Read N., Saleur H.: Continuum limit and symmetries of the periodic \({\mathfrak{gl}(1|1)}\) spin chain. Nucl. Phys. B 871 [FS], 245–288 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Gainutdinov A.M., Read N., Saleur H.: Bimodule structure in the periodic \({\mathfrak{gl}(1|1)}\) spin chain. Nucl. Phys. B 871 [FS], 289–329 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Howe, R.: Dual pairs in physics: harmonic oscillators, photons, electrons, and singletons. In: Flato, M., Sally, P., Zuckerman, G. (eds.) Applications of Group Theory in Physics and Mathematical Physics. Lectures in Applied Math., vol. 21, pp. 179–207. American Mathematical Society, Providence (1985)

  25. Kausch H.: Symplectic fermions. Nucl.Phys. B 583, 513–541 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Fjelstad J., Fuchs J., Hwang S., Semikhatov A.M., Tipunin I.Yu.: Logarithmic conformal field theories via logarithmic deformations. Nucl. Phys. B 633, 379 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Read N., Saleur H.: Exact spectra of conformal supersymmetric nonlinear sigma models in two dimensions. Nucl. Phys. B 613, 409 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Dubail J., Jacobsen J., Saleur H.: Conformal field theory at central charge \({c=0}\) : a measure of the indecomposability (b) parameters. Nucl. Phys. B 834, 399 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Vasseur R., Jacobsen J., Saleur H.: Indecomposability parameters in chiral logarithmic conformal field theory. Nucl. Phys. B 851, 314–345 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Gainutdinov A.M., Vasseur R.: Lattice fusion rules and logarithmic operator product expansions. Nucl. Phys. B 868, 223–270 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Bushlanov P.V., Gainutdinov A.M., Tipunin I.Yu.: Kazhdan–Lusztig equivalence and fusion of Kac modules in Virasoro logarithmic models. Nucl. Phys. B 862, 232–269 (2012)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Graham J.J., Lehrer G.I.: The representation theory of affine Temperley–Lieb algebras. L’Ens. Math. 44, 173 (1998)

    MATH  MathSciNet  Google Scholar 

  33. Graham J.J., Lehrer G.I.: The two-step nilpotent representations of the extended Affine Hecke algebra of type A. Compos. Math. 133, 173 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Martin P.P., Saleur H.: On an algebraic approach to higher-dimensional statistical mechanics. Commun. Math. Phys. 158, 155 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Martin P.P., Saleur H.: The blob algebra and the periodic Temperley–Lieb algebra. Lett. Math. Phys. 30, 189 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. Gainutdinov A.M., Read N., Saleur H., Vasseur R.: The periodic \({s\ell(2|1)}\) alternating spin chain and its continuum limit as a bulk logarithmic conformal field theory at \({c=0}\). JHEP 1565, 114 (2015)

    Article  MathSciNet  Google Scholar 

  37. Graham J.J., Lehrer G.I.: Cellular algebras. Invent. Math. 123, 1–34 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Goodman, R., Wallach, N.R.: Symmetry, representations, and invariants. In: Graduate Texts in Mathematics (Book 255). Springer, New York (2009)

  39. Martin, P.P., McAnally, D.: On commutants, dual pairs and non-semisimple algebras from statistical mechanics. Int. J. Mod. Phys. A 7(Supp. 1B), 675 (1992)

  40. Martin, P.P.: On Schur–Weyl duality, A n Hecke algebras and quantum sl(N) on \({\otimes^{n+1}{\mathbb C}^N}\). Int. J. Mod. Phys. A 7(Supp. 1B), 645 (1992)

  41. Brocker, T., Dieck, T.T.: Representations of Compact Lie Groups, pp. 271–272. Springer, New York (2013)

  42. Koo W.M., Saleur H.: Representations of the Virasoro algebra from lattice models. Int. J. Mod. Phys. A 8, 5165 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. Batchelor M.T., Cardy J.: Extraordinary transition in the two-dimensional O(n) model. Nucl. Phys. B 506, 553 (1997)

    Article  ADS  Google Scholar 

  44. Gainutdinov, A.M., Saleur, H., Tipunin, I.Y.: Lattice W-algebras and logarithmic CFTs. J. Phys. A Math. Theor. 47, 495401 (2014)

  45. Ottesen, J.T.: Infinite dimensional groups and algebras in quantum physics. In: Lecture Notes in Physics. Springer, New York (1995)

  46. Kac, V.: Infinite-Dimensional Lie Algebras. Cambridge University Press, Cambridge (1994)

  47. Gainutdinov, A.M.: TheVirasoro bimodule structure of the bulk symplectic fermions LCFT (unpublished)

  48. Gaberdiel M.R., Kausch H.G.: A local logarithmic conformal field theory. Nucl. Phys. B 538, 631–658 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  49. Donkin, S.: The q-Schur algebra. In: London Math. Soc. Lecture Note Series, vol. 253. Cambridge University Press, Cambridge (1999)

  50. Cardy J.: Operator content of two-dimensional conformally invariant theories. Nucl. Phys. 270, 186 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  51. Baake, M., Christe, Ph., Rittenberg, V.: Higher spin conserved currents in c = 1 conformally invariant systems. Nucl. Phys. B 300, 637 (1988)

  52. Grimm, U., Rittenberg,V.: Themodified XXZ Heisenberg chain: conformal invariance, surface exponents of c < 1 systems and hidden symmetries of finite chains. Int. J. Mod. Phys. B 4, 969 (1990)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Gainutdinov.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gainutdinov, A.M., Read, N. & Saleur, H. Associative Algebraic Approach to Logarithmic CFT in the Bulk: The Continuum Limit of the \({\mathfrak{gl}(1|1)}\) Periodic Spin Chain, Howe Duality and the Interchiral Algebra. Commun. Math. Phys. 341, 35–103 (2016). https://doi.org/10.1007/s00220-015-2483-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2483-9

Keywords

Navigation