Skip to main content
Log in

Quantum Hypothesis Testing and the Operational Interpretation of the Quantum Rényi Relative Entropies

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the new quantum extension of Rényi’s α-relative entropies, introduced recently by Müller-Lennert et al. (J Math Phys 54:122203, 2013) and Wilde et al. (Commun Math Phys 331(2):593–622, 2014), have an operational interpretation in the strong converse problem of quantum hypothesis testing. Together with related results for the direct part of quantum hypothesis testing, known as the quantum Hoeffding bound, our result suggests that the operationally relevant definition of the quantum Rényi relative entropies depends on the parameter α: for α < 1, the right choice seems to be the traditional definition \({{D_\alpha^{(old)}} (\rho \| \sigma) :=\frac{1}{\alpha-1} \,\,{\rm log\,\,Tr}\,\, \rho^{\alpha} \sigma^{1-\alpha}}\), whereas for α > 1 the right choice is the newly introduced version \({D_\alpha^{(new)}} (\rho \| \sigma) := \frac{1}{\alpha-1}\,{\rm log\,\,Tr}\,\big(\sigma^{\frac{1-\alpha}{2 \alpha}}\rho \sigma^{\frac{1-\alpha}{2 \alpha}}\big)^{\alpha}\).On the way to proving our main result, we show that the new Rényi α-relative entropies are asymptotically attainable by measurements for α > 1. From this, we obtain a new simple proof for their monotonicity under completely positive trace-preserving maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki H.: On an inequality of Lieb and Thirring. Lett. Math. Phys. 19(2), 167–170 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Audenaert K.M.R., Nussbaum M., Szkoła A., Verstraete F.: Asymptotic error rates in quantum hypothesis testing. Commun. Math. Phys. 279, 251–283 (2008)

    Article  ADS  MATH  Google Scholar 

  3. Audenaert K.M.R.: On the Araki–Lieb–Thirring inequality. Int. J. Inf. Syst. Sci. 4, 78–83 (2008)

    MATH  MathSciNet  Google Scholar 

  4. Beigi S.: Quantum Rényi divergence satisfies data processing inequality. J. Math. Phys. 54, 122202 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  5. Berta, M., Furrer, F., Scholz, V.B.: The smooth entropy formalism on von Neumann algebras (2011). arXiv:1107.5460

  6. Bhatia R.: Matrix Analysis. Springer, New York (1997)

    Book  Google Scholar 

  7. Bjelakovic I., Krüger T., Siegmund-Schultze R., Szkoła A.: The Shannon–McMillan theorem for ergodic quantum lattice systems. Invent. Math. 155(1), 203–222 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Bjelakovic I., Siegmund-Schultze R.: An ergodic theorem for the quantum relative entropy. Commun. Math. Phys. 247, 697–712 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Bjelakovic I., Deuschel J.-D., Krüger T., Seiler R., Siegmund-Schultze R., Szkoła A.: A quantum version of Sanov’s theorem. Commun. Math. Phys. 260(3), 659–671 (2005)

    Article  ADS  MATH  Google Scholar 

  10. Csiszár I.: Generalized cutoff rates and Rényi’s information measures. IEEE Trans. Inf. Theory 41, 26–34 (1995)

    Article  MATH  Google Scholar 

  11. Datta N.: Min- and max-relative entropies and a new entanglement monotone. IEEE Trans. Inf. Theory 55(6), 2816–2826 (2009)

    Article  Google Scholar 

  12. Dembo, A., Zeitouni, O.: Large deviations techniques and applications. In: Application of Mathematics, 2nd edn, vol. 38. Springer, New York (1998)

  13. Frank R.L., Lieb E.H.: Monotonicity of a relative Rényi entropy. J. Math. Phys 54, 122201 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  14. Han T.S., Kobayashi K.: The strong converse theorem for hypothesis testing. IEEE Trans. Inf. Theory 35, 178–180 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Han T.S.: Information-Spectrum Methods in Information Theory. Springer, New York (2003)

    Book  MATH  Google Scholar 

  16. Hayashi M.: Optimal sequence of POVM’s in the sense of Stein’s lemma in quantum hypothesis testing. J. Phys. A Math. Gen. 35, 10759–10773 (2002)

    Article  ADS  MATH  Google Scholar 

  17. Hayashi M.: Quantum Information Theory: An Introduction. Springer, New York (2006)

    Google Scholar 

  18. Hayashi M.: Error exponent in asymmetric quantum hypothesis testing and its application to classical-quantum channel coding. Phys. Rev. A 76, 062301 (2007)

    Article  ADS  Google Scholar 

  19. Hayashi, M.: Private communication (2014)

  20. Hayashi, M., Tomamichel, M.: Private communication (2013)

  21. Hayashi, M., Tomamichel, M.: Correlation detection and an operational interpretation of the Renyi mutual information. arXiv:1408.6894

  22. Hiai F., Petz D.: The proper formula for relative entropy and its asymptotics in quantum probability. Commun. Math. Phys. 143, 99–114 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Hiai F.: Equality cases in matrix norm inequalities of Golden–Thompson type. Linear Multilinear Algebra 36, 239–249 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hiai F., Mosonyi M., Ogawa T.: Error exponents in hypothesis testing for correlated states on a spin chain. J. Math. Phys. 49, 032112 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  25. Hiai F., Mosonyi M., Petz D., Bény C.: Quantum f-divergences and error correction. Rev. Math. Phys. 23(7), 691–747 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Jenčová A., Petz D.: Sufficiency in quantum statistical inference. Commun. Math. Phys. 263, 259–276 (2006)

    Article  ADS  MATH  Google Scholar 

  27. Jenčová A., Petz D.: Sufficiency in quantum statistical inference. A survey with examples. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9, 331–351 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Jenčová A., Petz D., Pitrik J.: Markov triplets on CCR algebras. Acta Sci. Math. (Szeged) 76, 27–50 (2010)

    MathSciNet  Google Scholar 

  29. Lieb E.H.: Convex trace functions and the Wigner–Yanase–Dyson conjecture. Adv. Math. 11, 267–288 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lieb, E.H., Thirring, W.: Studies in Mathematical Physics, pp. 269–297. Princeton University Press, Princeton (1976)

  31. Mosonyi M., Hiai F.: On the quantum Rényi relative entropies and related capacity formulas. IEEE Trans. Inf. Theory 57, 2474–2487 (2011)

    Article  MathSciNet  Google Scholar 

  32. Mosonyi, M.: Inequalities for the quantum Rényi divergences with applications to compound coding problems (2013). arxiv:1310.7525

  33. Mosonyi, M., Ogawa, T.: The strong converse rate of quantum hypothesis testing for correlated quantum states. arXiv:1407.3567

  34. Müller-Lennert M., Dupuis F., Szehr O., Fehr S., Tomamichel M.: On quantum Renyi entropies: a new definition and some properties. J. Math. Phys. 54, 122203 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  35. Nagaoka, H.: Strong converse theorems in quantum information theory. In: Proceedings of ERATO Workshop on Quantum Information Science, Tokyo, p. 33 (2001). (Hayashi, M. (ed.) Asymptotic Theory of Quantum Statistical Inference, pp. 64–65. World Scientific (2005)

  36. Nagaoka, H.: The converse part of the theorem for quantum Hoeffding bound. quant-ph/0611289

  37. Nagaoka H., Hayashi M.: An information-spectrum approach to classical and quantum hypothesis testing for simple hypotheses. IEEE Trans. Inf. Theory 53, 534–549 (2007)

    Article  MathSciNet  Google Scholar 

  38. Nielsen M.A., Chuang I.L.: Quantum Information and Quantum Computation. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  39. Ogawa T., Nagaoka H.: Strong converse and Stein’s lemma in quantum hypothesis testing. IEEE Trans. Inf. Theory 47, 2428–2433 (2000)

    MathSciNet  Google Scholar 

  40. Petz D.: Quasi-entropies for finite quantum systems. Rep. Math. Phys. 23, 57–65 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Petz D.: Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Commun. Math. Phys. 105, 123–131 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Petz D.: Sufficiency of channels over von Neumann algebras. Q. J. Math. Oxf. Ser. (2) 39(153), 97–108 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  43. Petz D.: Monotonicity of quantum relative entropy revisited. Rev. Math. Phys. 15(1), 79–91 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  44. Renner, R.: Security of quantum key distribution. Ph.D. dissertation, Swiss Federal Institute of Technology Zurich, Diss. ETH No. 16242 (2005)

  45. Rényi, A.: On measures of entropy and information. In: Proceedings of 4th Berkeley Sympos. Math. Statist. and Prob., vol. I, pp. 547–561. Univ. California Press, Berkeley (1961)

  46. Tomamichel, M.: A framework for non-asymptotic quantum information theory. Ph.D. thesis, Department of Physics, ETH Zurich. arXiv:1203.2142

  47. Uhlmann A.: The “transition probability” in the state space of a *-algebra. Rep. Math. Phys. 9, 273–278 (1976)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. Uhlmann A.: Relative entropy and the Wigner–Yanase–Dyson–Lieb concavity in an interpolation theory. Commun. Math. Phys. 54, 21–32 (1977)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. Umegaki H.: Conditional expectation in an operator algebra. Kodai Math. Sem. Rep. 14, 59–85 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  50. Wilde M.M., Winter A., Yang D.: Strong converse for the classical capacity of entanglement-breaking and Hadamard channels. Commun. Math. Phys. 331(2), 593–622 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  51. Winter, A.: Private communication (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milán Mosonyi.

Additional information

Communicated by M. M. Wolf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosonyi, M., Ogawa, T. Quantum Hypothesis Testing and the Operational Interpretation of the Quantum Rényi Relative Entropies. Commun. Math. Phys. 334, 1617–1648 (2015). https://doi.org/10.1007/s00220-014-2248-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2248-x

Keywords

Navigation