Skip to main content
Log in

Isomonodromic Tau-Functions from Liouville Conformal Blocks

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The goal of this note is to show that the Riemann–Hilbert problem to find multivalued analytic functions with \({{\rm SL}(2,\mathbb{C})}\)-valued monodromy on Riemann surfaces of genus zero with n punctures can be solved by taking suitable linear combinations of the conformal blocks of Liouville theory at c = 1. This implies a similar representation for the isomonodromic tau-function. In the case n = 4 we thereby get a proof of the relation between tau-functions and conformal blocks discovered in Gamayun et al. (J High Energy Phys, 10:038, 2012). We briefly discuss a possible application of our results to the study of relations between certain \({\mathcal{N}=2}\) supersymmetric gauge theories and conformal field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alday L.F., Gaiotto D., Tachikawa Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Aganagic M., Dijkgraaf R., Klemm A., Marino M., Vafa C.: Topological strings and integrable hierarchies. Commun. Math. Phys. 261, 451–516 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Alday L.F., Gaiotto D., Gukov S., Tachikawa Y., Verlinde H.: Loop and surface operators in \({\mathcal{N}=2}\) gauge theory and Liouville modular geometry. J. High Energy Phys. 1001, 113 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  4. Carlsson, E., Nekrasov, N., Okounkov, A.: Five dimensional gauge theories and vertex operators Moscow Math. J. 14, 39–61 (2014)

  5. Dijkgraaf, R., Hollands, L., Sułkowski, P., Vafa, C.: Supersymmetric gauge theories, intersecting branes and free fermions. JHEP 02, 106 (2008). doi:10.1088/1126-6708/2008/02/106

  6. Dijkgraaf, R., Hollands, L., Sułkowski, P.: Quantum curves and \({\mathcal{D}}\)-modules. JHEP 11, 047 (2009). doi:10.1088/1126-6708/2009/11/047

  7. Drukker N., Gomis J., Okuda T., Teschner J.: Gauge theory loop operators and Liouville theory. J. High Energy Phys. 1002, 057 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  8. Gamayun, O., Iorgov, N., Lisovyy, O.: Conformal field theory of Painlevé VI. J. High Energy Phys. 10, 038 (2012). arXiv:1207.0787 [hep-th]

  9. Iorgov, N., Lisovyy, O., Tykhyy, Yu.: Painlevé VI connection problem and monodromy of c = 1 conformal blocks. J. High Energy Phys. 12, 029 (2013). arXiv:1308.4092 [hep-th]

  10. Jimbo M.: Monodromy problem and the boundary condition for some Painlevé equations. Publ. Res. Inst. Math. Sci. 18(3), 1137–1161 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kitaev A.V., Korotkin D.A.: On solutions of the Schlesinger equations in terms of \({\Theta}\)-functions. Int. Math. Res. Notices 17, 877–905 (1998)

    Article  MathSciNet  Google Scholar 

  12. Litvinov, A., Lukyanov, S., Nekrasov, N., Zamolodchikov, A.: Classical conformal blocks and Painlevé VI. JHEP 07, 144 (2014). doi:10.1007/JHEP07(2014)144

  13. Losev, A.S., Marshakov, A.V., Nekrasov, N.A.: Small instantons, little strings and free fermions. In: Shifman, M., et al. (eds.) From Fields to Strings: Circumnavigating Theoretical Physics, vol. 1, pp. 581–621. World Science Publicaion, Singapore (2005)

  14. Losev, A.S., Nekrasov, N.A., Shatashvili, S.: Testing Seiberg–Witten Solution. Strings, Branes and Dualities (Cargèse, 1997), pp. 359–372. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 520, Kluwer Academic Publishers, Dordrecht (1999)

  15. Moore G., Nekrasov N.A., Shatashvili S.: Integrating over Higgs branches. Commun. Math. Phys. 209, 97–121 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Moore G., Nekrasov N.A., Shatashvili S.: D-Particle bound states and generalized instantons. Commun. Math. Phys. 209, 77–95 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Moore G., Seiberg N.: Classical and quantum conformal field theory. Commun. Math. Phys. 123, 177–254 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Nekrasov N.A.: Seiberg–Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7, 831–864 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Nekrasov, N., Okounkov, A.: Seiberg–Witten Theory and Random Partitions. The Unity of Mathematics, pp. 525–596. Progress in Mathematics, 244, Birkhäuser Boston, Boston (2006)

  20. Nekrasov, N., Rosly, A., Shatashvili, S.: Darboux coordinates, Yang-Yang functional, and gauge theory. Nucl. Phys. Proc. Suppl. 216, 69–93 (2011). arXiv:1103.3919

  21. Palmer J.: Determinants of Cauchy–Riemann operators as \({\tau}\)-functions. Acta Appl. Math. 18, 199–223 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sato M., Miwa T., Jimbo M.: Holonomic quantum fields. II. The Riemann–Hilbert problem. Publ. Res. Inst. Math. Sci. 15(1), 201–278 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sato, M., Miwa, T., Jimbo, M.: Aspects of holonomic quantum fields. Isomonodromic deformation and Ising model. In: Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory (Proc. International Colloquium Centre of Physics, Les Houches, 1979), Lecture Notes in Physics, 126, pp. 429–491. Springer, Berlin (1980)

  24. Teschner J.: A lecture on the Liouville vertex operators. Int. J. Mod. Phys. A 19(2), 436–458 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Teschner J.: Quantization of the Hitchin moduli spaces, Liouville theory and the geometric Langlands correspondence I. Adv. Theor. Math. Phys. 15(2), 471–564 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Teschner, J., Vartanov, G.: Supersymmetric gauge theories, quantisation of moduli spaces of flat connections, and conformal field theory. arXiv:1302.3778 (unpublished)

  27. Zamolodchikov Al.B.: Conformal scalar field on the hyperelliptic curve and critical Ashkin–Teller multipoint correlation functions. Nucl. Phys. B 285, 481–503 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  28. Zamolodchikov, A.B., Zamolodchikov, Al.B.: Conformal Field Theory and Critical Phenomena in Two-Dimensional Systems. MCNMO, Moscow (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Teschner.

Additional information

Communicated by N. Reshetikhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iorgov, N., Lisovyy, O. & Teschner, J. Isomonodromic Tau-Functions from Liouville Conformal Blocks. Commun. Math. Phys. 336, 671–694 (2015). https://doi.org/10.1007/s00220-014-2245-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2245-0

Keywords

Navigation