Skip to main content
Log in

A Geometric Approach to Boundaries and Surface Defects in Dijkgraaf–Witten Theories

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Dijkgraaf–Witten theories are extended three-dimensional topological field theories of Turaev–Viro type. They can be constructed geometrically from categories of bundles via linearization. Boundaries and surface defects or interfaces in quantum field theories are of interest in various applications and provide structural insight. We perform a geometric study of boundary conditions and surface defects in Dijkgraaf–Witten theories. A crucial tool is the linearization of categories of relative bundles. We present the categories of generalized Wilson lines produced by such a linearization procedure. We establish that they agree with the Wilson line categories that are predicted by the general formalism for boundary conditions and surface defects in three-dimensional topological field theories that has been developed in Fuchs et al. (Commun Math Phys 321:543–575, 2013)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barkeshli M., Jian C.M., Qi X.L.: Theory of defects in Abelian topological states. Phys. Rev. B 88, 235103 (2013) cond-mat.str-el/1305.7203

    Article  ADS  Google Scholar 

  2. Dijkgraaf R., Pasquier V., Roche P.: Quasi Hopf algebras, group cohomology and orbifold models. Nucl. Phys. B (Proc. Suppl.) 18B, 60–72 (1990)

    MathSciNet  MATH  ADS  Google Scholar 

  3. Dijkgraaf R., Witten E.: Topological gauge theories and group cohomology. Commun. Math. Phys 129, 393–429 (1990)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Etingof, P.I., Nikshych, D., Ostrik, V.: An analogue of Radford’s S 4 formula for finite tensor categories. Int. Math. Res. Notices, pp. 2915–2933 (2004). math.QA/0404504

  5. Freed D.S.: Classical Chern–Simons theory, Part 1. Adv. Math. 113, 237–303 (1995) hep-th/9206021

    Article  MathSciNet  MATH  Google Scholar 

  6. Fröhlich J., Fuchs J., Runkel I., Schweigert C.: Duality and defects in rational conformal field theory. Nucl. Phys. B 763, 354–430 (2007) hep-th/0607247

    Article  MATH  ADS  Google Scholar 

  7. Fuchs, J., Nikolaus, T., Schweigert, C., Waldorf, K.: Bundle gerbes and surface holonomy. In: Ran, A.C.M., te Riele, H., Wiegerinck, J. (eds.) European Congress of Mathematics, pp. 167–195. European Math. Society, Zürich (2010). math.DG/0901.2085

  8. Fuchs J., Schweigert C., Valentino A.: Bicategories for boundary conditions and for surface defects in 3-d TFT. Commun. Math. Phys. 321, 543–575 (2013) hep-th/1203.4568

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Fuchs J., Schweigert C., Waldorf K.: Bi-branes: target space geometry for world sheet topological defects. J. Geom. Phys. 58, 576–598 (2008) hep-th/0703145

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Kapustin A.: Ground-state degeneracy for abelian anyons in the presence of gapped boundaries. Phys. Rev. B 89, 125307 (2014) cond-mat/1306.4254

    Article  ADS  Google Scholar 

  11. Kapustin, A., Saulina, N.: Surface operators in 3d topological field theory and 2d rational conformal field theory. In: Sati, H., Schreiber, U. (eds.) Mathematical Foundations of Quantum Field and Perturbative String Theory, pp. 175–198. American Mathematical Society, Providence (2011). hep-th/1012.0911

  12. Kitaev A., Kong L.: Models for gapped boundaries and domain walls. Commun. Math. Phys. 313, 351–373 (2012) cond-mat/1104.5047

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Lauda A.D., Pfeiffer H.: Open-closed strings: two-dimensional extended TQFTs and Frobenius algebras. Topol. Appl. 155, 623–666 (2008) math.AT/0510664

    Article  MathSciNet  MATH  Google Scholar 

  14. Levin M.: Protected edge modes without symmetry. Phys. Rev. X 3, 021009 (2013) cond-mat/1301.7355

    Google Scholar 

  15. Moore, G., Segal, G.: D-branes and K-theory in 2D topological field theory. In: Aspinwall, P. et al. (eds.) Dirichlet Branes and Mirror Symmetry. American Mathematical Society, Providence 2009, pp. 27–108. hep-th/0609042

  16. Morton, J.C.: Extended TQFT, gauge theory, and 2-linearization. J. Homotopy Relat. Struct. (to appear, preprint). math.QA/1003.5603

  17. Ostrik V.: Module categories, weak Hopf algebras and modular invariants. Transform. Groups 8, 177–206 (2003). math.QA/0111139

    Article  MathSciNet  MATH  Google Scholar 

  18. Ostrik, V.: Module categories over the Drinfeld double of a finite group. Int. Math. Res. Notices No. 27, 1507–1520 (2003). math.QA/0202130

  19. Schweigert, C., Fuchs, J., Runkel, I.: Categorification and correlation functions in conformal field theory. In: Sanz-Solé, M., Soria, J., Varona, J.L., Verdera, J. (eds.) Proceedings of the ICM 2006, pp. 443–458. European Math. Society, Zürich (2006). math.CT/0602079

  20. Steenrod N.: The Topology of Fiber Bundles. Princeton University Press, Princeton (1951)

    Google Scholar 

  21. Wang, J., Wen, X.-G.: Boundary degeneracy of topological order (2012, preprint). cond-mat/1212.4863

  22. Willerton S.: The twisted Drinfeld double of a finite group via gerbes and finite groupoids. Algebr. Geom. Topol. 8, 1419–1457 (2008) math.QA/0503266

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Schweigert.

Additional information

Communicated by N. A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuchs, J., Schweigert, C. & Valentino, A. A Geometric Approach to Boundaries and Surface Defects in Dijkgraaf–Witten Theories. Commun. Math. Phys. 332, 981–1015 (2014). https://doi.org/10.1007/s00220-014-2067-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2067-0

Keywords

Navigation