Skip to main content
Log in

Threshold Phenomenon for the Quintic Wave Equation in Three Dimensions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For the critical focusing wave equation \({\square u = u^5 \, {\rm on} \, \mathbb{R}^{3+1}}\) in the radial case, we establish the role of the “center stable” manifold \({\Sigma}\) constructed in Krieger and Schlag (Am J Math 129(3):843–913, 2007) near the ground state (W, 0) as a threshold between blowup and scattering to zero, establishing a conjecture going back to numerical work by Bizoń et al. (Nonlinearity 17(6):2187–2201, 2004). The underlying topology is stronger than the energy norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri H., Gérard P.: High frequency approximation of solutions to critical nonlinear wave equations. Am. J. Math. 121(1), 131–175 (1999)

    Article  MATH  Google Scholar 

  2. Bates, P.W., Jones, C.K.R.T.: Invariant manifolds for semilinear partial differential equations. In: Dynamics reported, Vol. 2, Dynam. Report. Ser. Dynam. Systems Appl., Vol. 2, Chichester: Wiley, 1989, pp. 1–38

  3. Bizoń P., Chmaj T., Tabor Z.: On blowup for semilinear wave equations with a focusing nonlinearity. Nonlinearity 17(6), 2187–2201 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Donninger R., Krieger J.: Nonscattering solutions and blow up at infinity for the critical wave equation. Mathematische Annaten 357(1), 89–163 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Duyckaerts T., Kenig C., Merle F.: Universality of blow-up profile for small radial type II blow-up solutions of energy-critical wave equation. J. Eur. Math. Soc. 13(3), 533–599 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Duyckaerts T., Kenig C., Merle F.: Universality of the blow-up profile for small type II blow-up solutions of energy-critical wave equation: the non-radial case. J. Eur. Math. Soc. 14(5), 1389–1454 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Duyckaerts T., Kenig C., Merle F.: Profiles of bounded radial solutions of the focusing, energy-critical wave equation. Geom. Funct. Anal. 22(3), 639–698 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Duyckaerts, T., Kenig, C., Merle, F.: Classification of radial solutions of the focusing, energy-critical wave equation, preprint, arXiv:1204.0031v1 (2012)

  9. Duyckaerts T., Merle F.: Dynamic of threshold solutions for energy-critical NLS. Geom. Funct. Anal. 18(6), 1787–1840 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Duyckaerts, T., Merle, F.: Dynamic of threshold solutions for energy-critical wave equation. Int. Math. Res. Pap. IMRP (2008)

  11. Hillairet M., Raphaël P.: Smooth type II blow up solutions to the four dimensional energy critical wave equation. Anal. PDE 5(4), 777–829 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ibrahim S., Masmoudi N., Nakanishi K.: Scattering threshold for the focusing nonlinear Klein–Gordon equation. Anal. PDE 4(3), 405–460 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Karageorgis P., Strauss W.: Instability of steady states for nonlinear wave and heat equations. J. Differ. Equ. 241(1), 184–205 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Kenig C., Merle F.: Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case. Invent. Math. 166(3), 645–675 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Kenig C., Merle F.: Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math. 201(2), 147–212 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Krieger, J., Nakanishi, K., Schlag, W.: Global dynamics away from the ground state for the energy-critical nonlinear wave equation. Am. J. Math. (2014)

  17. Krieger, J., Nakanishi, K., Schlag, W.: Global dynamics of the nonradial energy-critical wave equation above the ground state energy. Disc. Cont. Dyn. Syst. A (2014)

  18. Krieger, J., Nakanishi, K., Schlag, W.: Center-Stable manifold of the ground state in the energy space for the critical wave equation, preprint (2013)

  19. Krieger J., Schlag W.: On the focusing critical semi-linear wave equation. Am. J. Math. 129(3), 843–913 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Krieger J., Schlag W., Tataru D.: Slow blow-up solutions for the \({H^1(\mathbb{R}^3)}\) critical focusing semilinear wave equation. Duke Math. J. 147(1), 1–53 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nakanishi K., Schlag W.: Global dynamics above the ground state energy for the focusing nonlinear Klein–Gordon equation. J. Differ. Equ. 250, 2299–2233 (2011)

    Google Scholar 

  22. Nakanishi K., Schlag W.: Global dynamics above the ground state energy for the cubic NLS equation in 3D. Calc. Var. PDE 44(1–2), 1–45 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nakanishi K., Schlag W.: Global dynamics above the ground state for the nonlinear Klein–Gordon equation without a radial assumption. Arch. Rational Mech. Anal. 203(3), 809–851 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Nakanishi, K., Schlag, W.: Invariant manifolds and dispersive Hamiltonian evolution equations. In: Zürich Lectures in Advanced Mathematics, EMS, 2011

  25. Palmer K.: Linearization near an integral manifold. J. Math. Anal. Appl. 51, 243–255 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  26. Payne L.E., Sattinger D.H.: Saddle points and instability of nonlinear hyperbolic equations. Israel J. Math. 22(3–4), 273–303 (1975)

    Article  MathSciNet  Google Scholar 

  27. Shoshitaishvili A.N.: Bifurcations of topological type of singular points of vector fields that depend on parameters. Funkcional. Anal. i Prilozen. 6(2), 97–98 (1972)

    MathSciNet  Google Scholar 

  28. Shoshitaishvili A.N.: The bifurcation of the topological type of the singular points of vector fields that depend on parameters. Trudy Sem. Petrovsk. Vyp. 1, 279–309 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Schlag.

Additional information

Communicated by P. Constantin

Support of the National Science Foundation DMS-0617854, DMS-1160817 for the third author, and the Swiss National Fund for the first author are gratefully acknowledged. The latter would like to thank the University of Chicago for its hospitality in August 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krieger, J., Nakanishi, K. & Schlag, W. Threshold Phenomenon for the Quintic Wave Equation in Three Dimensions. Commun. Math. Phys. 327, 309–332 (2014). https://doi.org/10.1007/s00220-014-1900-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1900-9

Keywords

Navigation