Skip to main content
Log in

Phase Separation in Random Cluster Models I: Uniform Upper Bounds on Local Deviation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This is the first in a series of three papers that addresses the behaviour of the droplet that results, in the percolating phase, from conditioning the planar Fortuin-Kasteleyn random cluster model on the presence of an open dual circuit Γ0 encircling the origin and enclosing an area of at least (or exactly) n 2. (By the Fortuin-Kasteleyn representation, the model is a close relative of the droplet formed by conditioning the Potts model on an excess of spins of a given type.) We consider local deviation of the droplet boundary, measured in a radial sense by the maximum local roughness, MLR(Γ0), this being the maximum distance from a point in the circuit Γ0 to the boundary of the circuit’s convex hull; and in a longitudinal sense by what we term maximum facet length, MLF(Γ0), namely, the length of the longest line segment of which the polygon is formed. The principal conclusion of the series of papers is the following uniform control on local deviation: that there are constants 0 < c < C < ∞ such that the conditional probability that the normalized quantity n −1/3(log n )−2/3MLR lies in the interval [c, C] tends to 1 in the high n-limit; and that the same statement holds for n −2/3 (log n )−1/3 MLF. In this way, we confirm the anticipated n 1/3 scaling of maximum local roughness, and provide a sharp logarithmic power-law correction. This local deviation behaviour occurs by means of locally Gaussian effects constrained globally by curvature, and we believe that it arises in many radially defined stochastic interface models, including growth models belonging to the Kardar-Parisi-Zhang universality class.

The present paper is devoted to proving the upper bounds in these assertions. In fact, we derive bounds valid in the moderate deviations’ regime. The second paper (Hammond in Ann Probab, arXiv:1001.1528, 142(2):229–276, 2011) provides the lower bounds. Crucial to our approach are surgical techniques that renew the conditioned circuit on the scale at which the local deviation manifests itself. A successful analysis of the surgeries depends on the circuit possessing a renewal structure, with only local backtracking occurring from its overall progress in a direction specified by the macroscopic Wulff profile. The third paper (Hammond in J Stat Phys 142(2):229–276, 2010) presents the required tool on regeneration structure of the conditioned circuit.

The present paper includes a heuristic presentation of the surgical technique that is also used in Hammond (J Stat Phys 142(2):229–276, 142(2):229–276, 2010), and a discussion of the significance of local deviation and of problems raised by our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman M., Barsky D.J., Fernández R.: The phase transition in a general class of Ising-type models is sharp. J. Stat. Phys. 47(3–4), 343–374 (1987)

    Article  ADS  Google Scholar 

  2. Aizenman M., Barsky D.J.: Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108(3), 489–526 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Alexander K.S.: On weak mixing in lattice models. Probab. Th. Rel. Fields 110(4), 441–471 (1998)

    Article  MATH  Google Scholar 

  4. Alexander K.S.: Cube-root boundary fluctuations for droplets in random cluster models. Commun. Math. Phys. 224(3), 733–781 (2001)

    Article  ADS  MATH  Google Scholar 

  5. Alexander K.S.: Mixing properties and exponential decay for lattice systems in finite volumes. Ann. Probab. 32(1A), 441–487 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beffara V.: On conformally invariant subsets of the planar Brownian curve. Ann. Inst. H. Poincaré Probab. Stat. 39(5), 793–821 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Beffara, V., Duminil-Copin, H.: The self-dual point of the 2D random-cluster model is critical above q = 1. http://arXiv.org/abs/1006.5073v1 [math.PR] 2010

  8. Bouchaud J.-P., Mézard M.: Universality classes for extreme-value statistics. J. Phys. A: Math. Gen. 30, 7997–8015 (1997)

    Article  ADS  MATH  Google Scholar 

  9. Campanino M., Ioffe D., Velenik Y.: Fluctuation theory of connectivities for subcritical random cluster models. Ann. Probab. 36(4), 1287–1321 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cerf, R.: Large deviations for three dimensional supercritical percolation. Astérisque (267), vi+177 (2000)

  11. Cerf R., Pisztora Á.: On the Wulff crystal in the Ising model. Ann. Probab. 28(3), 947–1017 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Chayes J.T., Chayes L., Schonmann R.H.: Exponential decay of connectivities in the two-dimensional Ising model. J. Stat. Phys. 49(3-4), 433–445 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Dobrushin, R., Kotecký, R., Shlosman, S.: Wulff construction, Volume 104 of Translations of Mathematical Monographs. Providence, RI: Amer. Math. Soc., 1992. Translated from the Russian by the authors

  14. Edwards R.G., Sokal A.D.: Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. Phys. Rev. D (3) 38(6), 2009–2012 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  15. Ferrari P.L., Spohn H.: Constrained Brownian motion: fluctuations away from circular and parabolic barriers. Ann. Probab. 33(4), 1302–1325 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fortuin C.M., Kasteleyn P.W.: On the random-cluster model. I. Introduction and relation to other models. Physica 57, 536–564 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  17. Garban, C., Pete, G., Schramm, O.: The scaling limits of dynamical and near-critical percolation. In preparation

  18. Grimmett, G.: The random-cluster model. Volume 333 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin: Springer-Verlag, 2006

  19. Groeneboom P.: Brownian motion with a parabolic drift and Airy functions. Probab. Th. Rel. Fields 81(1), 79–109 (1989)

    Article  MathSciNet  Google Scholar 

  20. Hammond, A.: Phase separation in random cluster models II: the droplet at equilibrium and local deviation lower bounds. arXiv:1001.1528. Ann. Probab. (2011, to appear)

  21. Hammond A.: Phase separation in random cluster models III: circuit regularity. J. Stat. Phys 142(2), 229–276 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  22. Hammond A., Peres Y.: Fluctuation of a planar Brownian loop capturing a large area. Trans. Amer. Math. Soc. 360(12), 6197–6230 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hryniv O., Ioffe D.: Self-avoiding polygons: sharp asymptotics of canonical partition functions under the fixed area constraint. Markov Process. Rel. Fields 10(1), 1–64 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Ioffe D., Schonmann R.H.: Dobrushin-Kotecký-Shlosman theorem up to the critical temperature. Commun. Math. Phys. 199(1), 117–167 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Johansson K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209(2), 437–476 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Johansson K.: Discrete polynuclear growth and determinantal processes. Commun. Math. Phys. 242((1–2), 277–329 (2003)

    MathSciNet  ADS  MATH  Google Scholar 

  27. Kardar M., Parisi G., Zhang Y.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56(9), 889–892 (1986)

    Article  ADS  MATH  Google Scholar 

  28. Laanait L., Messager A., Miracle-Solé S., Ruiz J., Shlosman S.: Interfaces in the Potts model. I. Pirogov-Sinai theory of the Fortuin-Kasteleyn representation. Commun. Math. Phys. 140(1), 81–91 (1991)

    Article  ADS  MATH  Google Scholar 

  29. Majumdar S.N., Comtet A.: Airy distribution function: from the area under a Brownian excursion to the maximal height of fluctuating interfaces. J. Stat. Phys. 119(3–4), 777–826 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108(5–6), 1071–1106 (2002) Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays

    Google Scholar 

  31. Schehr G., Le Doussal P.: Extreme value statistics from the real space renormalization group: Brownian motion, Bessel processes and continuous time random walks. J. Stat. Mech. 2010, PO1009 (2010)

    MathSciNet  Google Scholar 

  32. Swendsen R.H., Wang J.-S.: Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett. 58, 86–88 (1987)

    Article  ADS  Google Scholar 

  33. Tóth B., Werner W.: The true self-repelling motion. Probab. Th. Rela. Fields. 111(3), 375–452 (1998)

    Article  MATH  Google Scholar 

  34. Uzun H.B., Alexander K.S.: Lower bounds for boundary roughness for droplets in Bernoulli percolation. Probab. Th. Rel. Fields. 127(1), 62–88 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wulff G.: Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Kristallflächen. Zeitschrift für Krystallographie und Mineralogie. 34(5–6), 449–530 (1901)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Hammond.

Additional information

Communicated by H. Spohn

Supported in part by U.S. NSF grant OISE-07-30136 and U.K. EPSRC grant EP/1004378/1. This work was undertaken during visits to the Theory Group at Microsoft Research in Redmond, WA, and to Ecole Normale Superieure in Paris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammond, A. Phase Separation in Random Cluster Models I: Uniform Upper Bounds on Local Deviation. Commun. Math. Phys. 310, 455–509 (2012). https://doi.org/10.1007/s00220-011-1370-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1370-2

Keywords

Navigation