Skip to main content
Log in

Quantum Brownian Motion on Non-Commutative Manifolds: Construction, Deformation and Exit Times

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We begin with a review and analytical construction of quantum Gaussian process (and quantum Brownian motions) in the sense of Franz (The Theory of Quantum Levy Processes, http://arxiv.org/abs/math/0407488v1 [math.PR], 2009), Schürmann (White noise on bioalgebras. Volume 1544 of Lecture Notes in Mathematics. Berlin: Springer-Verlag, 1993) and others, and then formulate and study in details (with a number of interesting examples) a definition of quantum Brownian motions on those non-commutative manifolds (a la Connes) which are quantum homogeneous spaces of their quantum isometry groups in the sense of Goswami (Commun Math Phys 285(1):141–160, 2009). We prove that bi-invariant quantum Brownian motion can be ‘deformed’ in a suitable sense. Moreover, we propose a non-commutative analogue of the well-known asymptotics of the exit time of classical Brownian motion. We explicitly analyze such asymptotics for a specific example on non-commutative two-torus \({\mathcal{A}_\theta}\) , which seems to behave like a one-dimensional manifold, perhaps reminiscent of the fact that \({\mathcal{A}_\theta}\) is a non-commutative model of the (locally one-dimensional) ‘leaf-space’ of the Kronecker foliation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attal, S., Sinha, K. B.: Stopping semimartingales on Fock space. In: Quantum probability communications, QP-PQ, X, River Edge, NJ: World Sci. Publ., 1998, pp. 171–185

  2. Banica T., Goswami D.: Quantum isometries and noncommutative spheres. Commun. Math. Phys. 298(2), 343–356 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. Barnett, C., Wilde, I.F.: Quantum stopping-times. In: Quantum probability & related topics, QP-PQ, VI, River Edge, NJ: World Sci. Publ., 1991, pp. 127–135

  4. Bhowmick, J.: Quantum isometry groups. Phd Thesis. http://arxiv.org/abs/0907.0618v1 [math.OA], 2009

  5. Bhowmick J., Goswami D.: Quantum isometry groups: examples and computations. Commun. Math. Phys. 285(2), 421–444 (2009)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Boca, F.P.: Ergodic actions of compact matrix pseudogroups on C*-algebras. In: Recent Advances in Operator Algebras (Orleans, 1992). Asterisque, No. 232, 93–109 (1995)

  7. Bhowmick J., Goswami D.: Quantum isometry groups: examples and computations. Commun. Math. Phys. 285(2), 421–444 (2009)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Connes, A.: Noncommutative geometry. San Diego, CA: Academic Press Inc., 1994

  9. Connes A., Dubois-Violette M.: Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples. Commun. Math. Phys. 230(3), 539–579 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Davidson, K.R.: C*-algebras by example. Volume 6 of Fields Institute Monographs. Providence, RI: Amer. Math. Soc., 1996

  11. Franz, U.: The Theory of Quantum Levy Processes. Habilitation thesis EMAU Greifswald. http://arxiv.org/abs/math/0407488v1 [math.PR], 2009

  12. Goswami D.: Quantum group of isometries in classical and noncommutative geometry. Commun. Math. Phys. 285(1), 141–160 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Gray A.: The volume of a small geodesic ball of a Riemannian manifold. Michigan Math. J. 20, 329–344 (1974)

    Article  Google Scholar 

  14. Itô K.: Brownian motions in a Lie group. Proc. Japan Acad. 26(8), 4–10 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  15. Liao M., Zheng W.A.: Radial part of Brownian motion on a Riemannian manifold. Ann. Probab. 23(1), 173–177 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Liao, M.: Lévy processes in Lie groups. Volume 162 of Cambridge Tracts in Mathematics. Cambridge: Cambridge University Press, 2004

  17. Maes A., Van Daele A.: Notes on compact quantum groups. Nieuw Arch. Wisk. (4) 16(1-2), 73–112 (1998)

    MATH  MathSciNet  Google Scholar 

  18. Goswami D., Sahu L.: Invariants for Normal Completely Positive Maps on the Hyperfinite I I 1 Factor. Proc. Ind. Acad. Sci. (Math. Sci.) 116(4), 411–422 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mohari A., Sinha K.B.: Quantum stochastic flows with infinite degrees of freedom and countable state Markov processes. Sankhyā Ser. A 52(1), 43–57 (1990)

    MATH  MathSciNet  Google Scholar 

  20. Parthasarathy, K.R.: An introduction to quantum stochastic calculus. Volume 85 of Monographs in Mathematics. Basel: Birkhäuser Verlag, 1992

  21. Parthasarathy, K.R., Sinha, K.B.: Stop times in Fock space stochastic calculus. In: Proceedings of the 1st World Congress of the Bernoulli Society, Vol. 1 (Tashkent, 1986), Utrecht: VNU Sci. Press, 1987, pp. 495–498

  22. Parthasarathy, K.R., Sunder, V.S.: Exponentials of indicator functions are total in the boson Fock space Γ(L 2[0, 1]). In: Quantum probability communications, QP-PQ, X, River Edge, NJ: World Sci. Publ., 1998, pp. 281–284

  23. Pinsky M.A.: Mean exit time from a bumpy sphere. Proc. Amer. Math. Soc. 122(3), 881–883 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  24. Podleś P.: Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups. Commun. Math. Phys 170(1), 1–20 (1995)

    Article  MATH  ADS  Google Scholar 

  25. Rieffel, M.A.: Deformation quantization for actions of R d. Mem. Amer. Math. Soc. 106(506) (1993)

  26. Schürmann, M.: White noise on bialgebras. Volume 1544 of Lecture Notes in Mathematics. Berlin: Springer-Verlag, 1993

  27. Sinha, K.B., Goswami, D.: Quantum stochastic processes and noncommutative geometry. Volume 169 of Cambridge Tracts in Mathematics. Cambridge: Cambridge University Press, 2007

  28. Skeide, M.: Indicator functions of intervals are totalizing in the symmetric Fock space. In: Accardi, L., Kuo, H.-H., Obata, N., Saito, K., Si, S., Streit, L., eds. Trends in Contemporary Infinite Dimensional Analysis and Quantum Probability. Volume in honour of Takeyuki Hida, Istituto Italiano di Cultura (ISEAS), Kyoto 2000 (Rome, Volterra-Preprint 1999/0395), 1999

  29. Stroock, D.W., Varadhan, S.R.S.: Multidimensional diffusion processes. Classics in Mathematics. Berlin: Springer-Verlag, 2006, Reprint of the 1997 edition

  30. Wang S.: Deformations of compact quantum groups via Rieffel’s quantization. Commun. Math. Phys. 178(3), 747–764 (1996)

    Article  MATH  ADS  Google Scholar 

  31. Yosida K.: A characterization of the second order elliptic differential operators. Proc. Japan Acad. 31, 406–409 (1955)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashish Goswami.

Additional information

Communicated by A. Connes

Research partially supported by Indian National Science Academy and Dept. of Science and Technology, Govt. of India (Swarnajayanti Fellowship).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, B., Goswami, D. Quantum Brownian Motion on Non-Commutative Manifolds: Construction, Deformation and Exit Times. Commun. Math. Phys. 309, 193–228 (2012). https://doi.org/10.1007/s00220-011-1368-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1368-9

Keywords

Navigation