Skip to main content
Log in

A Mirror Symmetric Solution to the Quantum Toda Lattice

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give a representation-theoretic proof of a conjecture from Rietsch (Adv Math 217:2401–2442, 2008) providing integral formulas for solutions to the quantum Toda lattice in general type. This result generalizes work of Givental for SL n /B in a uniform way to arbitrary type, and can be interpreted as a kind of mirror theorem for the full flag variety G/B. We also prove the existence of a totally positive and totally negative critical point of the ‘superpotential’ in every mirror fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braverman, A.: Instanton counting via affine Lie algebras I: Equivariant J-functions of (affine) flag manifolds and Whittaker vectors. http://arXiv.org/abs/math/0401409v2 [math.AG], 2004

  2. Deodhar V.: On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells. Invent. Math. 79, 499–511 (1985)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Eguchi T., Yang S-K.: The topological \({\mathbb{C}P^1}\) model and the large-N matrix integral. Mod. Phys. Lett. A 9(31), 2893–2902 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Etingof P.: Whittaker functions on quantum groups and q-deformed Toda operators. Amer. Math. Soc. Transl. Ser. 2 194, 9–25 (1999)

    MathSciNet  Google Scholar 

  5. Gerasimov, A., Kharchev, S., Lebedev, D., Oblezin, S.: On a Gauss-Givental representation of quantum Toda chain wave function. Int. Math. Res. Not. 2006, no. Article ID 96489, (2006)

  6. Gerasimov, A., Kharchev, S., Lebedev, D., Oblezin, S.: New Integral Representations of Whittaker Functions for Classical Lie Groups. http://arXiv.org/abs/0705.2886v1 [math.RT], 2007

  7. Givental, A.: Homological geometry and Mirror Symmetry. In: Proceedings of the International Congress of Mathematicians, (Zurich, 1994) Basel: Birkäuser, 1995, pp. 472–480

  8. Givental A.: Equivariant Gromov-Witten invariants. IMRN 13, 613–663 (1996)

    Article  MathSciNet  Google Scholar 

  9. Givental, A.: Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture. Topics in singularity theory, American Mathematical Society Translations Ser 2, Providence, RI: Amer. Math. Soc., 1997

  10. Givental A., Kim B.: Quantum cohomology of flag manifolds and Toda lattices. Commun. Math. Phys. 168, 609–641 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Herrera M.E.: Integration on a semianalytic set. Bull. Soc. Math. France 94, 141–180 (1966)

    MATH  MathSciNet  Google Scholar 

  12. Hien, M.: Periods of flat algebraic connections. http://arXiv.org/abs/0803.3463v1 [math.AG], 2008

  13. Hien M., Roucairol C.: Integral representations for solutions of exponential Gauss-Manin systems. Bull. Soc. Math. France 136(fascicule 4), 505–532 (2008)

    MATH  MathSciNet  Google Scholar 

  14. Kim B.: Quantum cohomology of flag manifolds G/B and quantum Toda lattices. Ann. Math. 149, 129–148 (1999)

    Article  MATH  Google Scholar 

  15. Knapp, A.: Lie groups beyond and introduction. Progress in Mathematics, Vol. 140, Boston: Birkäuser, 1996

  16. Kostant B.: Lie group representations on polynomial rings. Amer. J. Math. 86, 327–404 (1963)

    Article  MathSciNet  Google Scholar 

  17. Kostant, B.: Quantization and representation theory. Proc. Oxford Conference on Group Theory and Physics, Oxford, 1977, pp. 287–316

  18. Kostant B.: On Whittaker vectors and representation theory. Invent. Math. 48(2), 101–184 (1978)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Kostant B.: The solution to a generalized Toda lattice and representation theory. Adv. in Math. 34(3), 195–338 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kostant B.: Flag manifold quantum cohomology, the Toda lattice, and the representation with highest weight ρ. Selecta Math. (N.S.) 2, 43–91 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kostant, B.: Quantum cohomology of the flag manifold as an algebra of rational functions on a unipotent algebraic group. Deformation Theory and Symplectic Geometry (D. Sternheimer et al., ed.), Amsterdam: Kluwer, 1997, pp. 157–175

  22. Lam, T., Rietsch, K.: Total positivity, Schubert positivity, and geometric Satake. In preparation

  23. Lusztig, G.: Total positivity in reductive groups. In: Lie theory and geometry: In honor of Bertram Kostant, G.I. Lehrer, ed., Progress in Mathematics, Vol. 123, Boston: Birkhäuser, 1994, pp. 531–568

  24. Marsh R.J., Rietsch K.: Parametrizations of flag varieties. Rep. Thy. 8, 212–242 (2004)

    MATH  MathSciNet  Google Scholar 

  25. Milicic, D., Soergel, W.: Twisted Harish-Chandra sheaves and Whittaker modules. (1995).

  26. Mochizuki, T.: Wild harmonic bundles and wild pure twistor D-modules. http://arXiv.org/abs/0803.1344v1 [math.DG], 2008

  27. Moser, J.: Finitely many mass points on the line under the influence of an exponential potential-an integrable system. In: Dynamical systems, theory and applications, Springer Lecture Notes in Phys., Vol. 38, Berlin: Springer, 1975, pp. 467–497

  28. Pham F.: Vanishing homologies and the n variable saddle point method. Proc. Symposia in Pure Math. 40, 319–333 (1983)

    MathSciNet  Google Scholar 

  29. Peterson, D.: Quantum cohomology of G/P. Lecture Course, M.I.T., Spring Term, 1997

  30. Rietsch K.: Quantum cohomology of Grassmannians and total positivity. Duke Math. J. 113(3), 521–551 (2001)

    MathSciNet  Google Scholar 

  31. Rietsch K.: Totally positive Toeplitz matrices and quantum cohomology of partial flag varieties. J. Amer. Math. Soc. 16, 363–392 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Rietsch K.: A mirror construction for the totally nonnegative part of the Peterson variety. Nagoya Math. J. 183, 105–142 (2006)

    MATH  MathSciNet  Google Scholar 

  33. Rietsch K.: Errata to: “Totally positive Toeplitz matrices and quantum cohomology of partial flag varieties”. J. Amer. Math. Soc. 21, 611–614 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Rietsch K.: A mirror symmetric construction for \({q{H}^{*}_{T}({G}/{P})_{(q)}}\). Adv. in Math. 217, 2401–2442 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  35. Rietsch, K.: A mirror symmetric solution to the quantum Toda lattice. http://arXiv.org/abs/0705.3202v1 [math.RT], 2007

  36. Semenov-Tian-Shansky, M.A.: Quantization of Open Toda Lattices. In: Dynamical systems VII, V.I. Arnold, S.P. Novikov, (eds.), Encyclopaedia of Mathematical Sciences, Vol. 16, Berlin: Springer, 1994, pp. 226–259

  37. Springer, T.A.: Linear algebraic groups, second edition. Progress in Mathematics, Vol. 9, Boston: Birkhäuser, 1998

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstanze Rietsch.

Additional information

Communicated by Y. Kawahigashi

The author is supported by EPSRC advanced fellowship EP/S071395/1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rietsch, K. A Mirror Symmetric Solution to the Quantum Toda Lattice. Commun. Math. Phys. 309, 23–49 (2012). https://doi.org/10.1007/s00220-011-1308-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1308-8

Keywords

Navigation