Skip to main content
Log in

Ground State at High Density

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Weak limits as the density tends to infinity of classical ground states of integrable pair potentials are shown to minimize the mean-field energy functional. By studying the latter we derive global properties of high-density ground state configurations in bounded domains and in infinite space. Our main result is a theorem stating that for interactions having a strictly positive Fourier transform the distribution of particles tends to be uniform as the density increases, while high-density ground states show some pattern if the Fourier transform is partially negative. The latter confirms the conclusion of earlier studies by Vlasov (in J. Phys. (USSR) IX:25–40, 1945), Kirzhnits and Nepomnyashchii (in Sov. Phys. JETP 32:1191–1197, 1971), and Likos et al. (in J. Chem. Phys. 126:224502, 2007). Other results include the proof that there is no Bravais lattice among high-density ground states of interactions whose Fourier transform has a negative part and the potential diverges or has a cusp at zero. We also show that in the ground state configurations of the penetrable sphere model particles are superimposed on the sites of a close-packed lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sütő A.: Crystalline ground states for classical particles. Phys. Rev. Lett. 95, 265501 (2005)

    Article  ADS  Google Scholar 

  2. Sütő A.: From bcc to fcc: Interplay between oscillating long-range and repulsive short-range forces. Phys. Rev. B 74, 104117 (2006)

    Article  ADS  Google Scholar 

  3. Likos C.N.: Going to ground. Nature 440, 433–434 (2006)

    Article  ADS  Google Scholar 

  4. Likos C.N., Mladek B.M., Gottwald D., Kahl G.: Why do ultrasoft repulsive particles cluster and crystallize? Analytical results from density-functional theory. J. Chem. Phys. 126, 224502 (2007)

    Article  ADS  Google Scholar 

  5. Sütő A.: A possible mechanism of concurring diagonal and off-diagonal long-range order for soft interactions. J. Math. Phys. 50, 032107 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  6. Vlasov A.: On the kinetic theory of an assembly of particles with collective interaction. J. Phys. (USSR) IX, 25–40 (1945)

    MathSciNet  Google Scholar 

  7. Ruelle D.: Statistical Mechanics: Rigorous Results. W. A. Benjamin, New York (1969)

    MATH  Google Scholar 

  8. Kirzhnits D.A., Nepomnyashchii Yu.A.: Coherent crystallization of quantum liquid. Sov. Phys. JETP 32, 1191–1197 (1971)

    ADS  Google Scholar 

  9. Nepomnyashchii Yu.A.: Coherent crystals with one-dimensional and cubic lattices. Theor. Math. Phys. 8, 928–938 (1971)

    Article  Google Scholar 

  10. Sütő A.: Superimposed particles in 1D ground states. J. Phys. A: Math. Theor. 44, 035205 (2011)

    Article  ADS  Google Scholar 

  11. Stillinger F.H.: Phase transitions in the Gaussian core system. J. Chem. Phys. 65, 3968–3974 (1976)

    Article  ADS  Google Scholar 

  12. Lang A., Likos C.N., Watzlawek M., Löwen H.: Fluid and solid phases of the Gaussian core model. J. Phys. Condens. Matter 12, 5087–5108 (2000)

    Article  ADS  Google Scholar 

  13. Torquato S., Stillinger F.H.: New conjectural lower bounds on the optimal density of sphere packings. Exp. Math. 15, 307–331 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Torquato S., Stillinger F.H.: New duality relations for classical ground states. Phys. Rev. Lett. 100, 020602 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  15. Cohn H., Kumar A.: Counterintuitive ground states in soft-core models. Phys. Rev. E 78, 061113 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. Cohn H., Kumar A., Schürmann A.: Ground states and formal duality relations in the Gaussian core model. Phys. Rev. E 80, 061116 (2009)

    Article  ADS  Google Scholar 

  17. Lebowitz J.L., Penrose O.: Rigorous treatment of the van der Waals-Maxwell theory of liquid vapor transition. J. Math. Phys. 7, 98 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  18. Gates D.J., Penrose O.: The van der Waals limit for classical systems I. A variational principle. Commun. Math. Phys. 15, 255–276 (1969)

    ADS  MATH  MathSciNet  Google Scholar 

  19. Benois O., Bodineau T., Presutti E.: Large deviations in the van der Waals limit. Stoch. Proc. Appl. 75, 89–104 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Carlen E.A., Carvalho E.C., Esposito L., Lebowitz J.L., Marra R.: Droplet minimizers for the Cahn-Hilliard free energy functional. J. Geom. Anal. 16, 233–264 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Carlen E.A., Carvalho E.C., Esposito L., Lebowitz J.L., Marra R.: Droplet minimizers for the Gates-Lebowitz-Penrose free energy functional. Nonlinearity 22, 2919–2952 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Modica L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Rat. Mech. Anal. 98, 123–142 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rudin W.: Real and complex analysis. McGraw-Hill, New York (1986)

    Google Scholar 

  24. Ruelle D.: Classical statistical mechanics of a system of particles. Helv. Phys. Acta 36, 183–197 (1963)

    MATH  MathSciNet  Google Scholar 

  25. Kiessling M.K.-H.: A note on classical ground state energies. J. Stat. Phys. 136, 275–284 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Witten T.A., Pincus P.A.: Colloid stabilization by long grafted polymers. Macromolecules 19, 2509–2513 (1986)

    Article  ADS  Google Scholar 

  27. Berg Ch., Forst G.: Potential theory on locally compact Abelian groups. Springer-Verlag, Berlin, Heidelberg, New York (1975)

    MATH  Google Scholar 

  28. Hof A.: On diffraction by aperiodic structures. Commun. Math. Phys. 169, 25–43 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Reed M., Simon B.: Functional Analysis. Academic Press, New York (1980)

    MATH  Google Scholar 

  30. Ventevogel W.J.: On the configuration of a one-dimensional system of interacting particles with minimum potential energy per particle. Physica 92, 343–361 (1978)

    Article  Google Scholar 

  31. Theil F.: A proof of crystallisation in two dimensions. Commun. Math. Phys. 262, 209–239 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Radin, C.: Existence of ground state configurations. Math. Phys. Electron. J. 10(6) (2004)

  33. Bellissard J., Radin C., Shlosman S.: The characterization of ground states. J. Phys. A: Math. Theor. 43, 305001 (2010)

    Article  MathSciNet  Google Scholar 

  34. Sinai, Ya.G.: Theory of phase transitions: Rigorous results. Budapest, Akadémiai Kiadó, New York: Pergamon Press, 1982, Lemma 2.1

  35. Radin C.: Classical ground states in one dimension. J. Stat. Phys. 35, 109–117 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  36. Nicolò F., Radin C.: A first order transition between crystal phases in the shift model. J. Stat. Phys. 28, 473–478 (1982)

    Article  ADS  Google Scholar 

  37. Hamrick G.C., Radin C.: The symmetry of ground states under perturbation. J. Stat. Phys. 21, 601–607 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  38. Radin C.: Low temperature and the origin of crystalline symmetry. Int. J. Mod. Phys. B 1, 1157–1191 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  39. Marquest C., Witten T.A.: Simple cubic structure in copolymer mesophases. J. Phys. France 50, 12671277 (1989)

    Article  Google Scholar 

  40. Klein W., Gould H., Ramos R.A., Clejan I., Mel’cuk A.I.: Repulsive potentials, clumps and the metastable glass phase. Physica A 205, 738–746 (1994)

    Article  ADS  Google Scholar 

  41. Likos C.N., Watzlawek M., Löven H.: Freezing and clustering transitions for penetrable spheres. Phys. Rev. E 58, 3135–3144 (1998)

    Article  ADS  Google Scholar 

  42. Fernaud M.-J., Lomba E., Lee L.L.: A self-consistent integral equation study of the structure and thermodynamics of the penetrable sphere fluid. J. Chem. Phys. 112, 810–816 (2000)

    Article  ADS  Google Scholar 

  43. Fekete M.: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Z. 17, 228–249 (1923)

    Article  MathSciNet  Google Scholar 

  44. Choquet, G.: Diamètre transfini et comparaison de diverses capacités. Séminaire Brelot-Choquet-Deny. Théorie du potentiel 3(4), 1–7 (1958–1959)

  45. Farkas B., Nagy B.: Transfinite diameter, Chebyshev constant and energy on locally compact spaces. Potential Anal. 28, 241–260 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  46. Fuglede B.: On the theory of potentials in locally compact spaces. Acta Math. 103, 139–215 (1960)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Sütő.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sütő, A. Ground State at High Density. Commun. Math. Phys. 305, 657–710 (2011). https://doi.org/10.1007/s00220-011-1276-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1276-z

Keywords

Navigation