Advertisement

Analytical and Bioanalytical Chemistry

, Volume 408, Issue 1, pp 49–65 | Cite as

Advances in explosives analysis—part II: photon and neutron methods

  • Kathryn E. Brown
  • Margo T. Greenfield
  • Shawn D. McGrane
  • David S. MooreEmail author
Review
Part of the following topical collections:
  1. ABC Highlights: authored by Rising Stars and Top Experts

Abstract

The number and capability of explosives detection and analysis methods have increased dramatically since publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis [Moore DS, Goodpaster JV, Anal Bioanal Chem 395:245–246, 2009]. Here we review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. Part I discussed methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers, electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. This part, Part II, will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.

Keywords

Explosives detection Trace analysis Explosives Improvised explosives Instrumentation Reviews 

Explosives glossary

AN

Ammonium nitrate

ANTA

3-Amino-5-nitro-1,2,4-triazole

DNB

Dinitrobenzene (isomers 1,3-DNB and 1,4-DNB)

DNT

Dinitrotoluene (isomers 2,4-DNT and 2,6-DNT)

FOX-7

1,1-Diamino-2,2-dinitroethene (DADNE)

HME

Homemade explosive

HMTD

Hexamethylene triperoxide diamine

HMX

Octagen; octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

IED

Improvised explosive device

Picric acid

2,4,6-Trinitrophenol

NG

Nitroglycerine; nitro; glyceryl trinitrate; RNG; trinitroglycerine

NTO

Nitrotriazalone

PETN

Pentaerythritol tetranitrate; 2,2-bis[(nitroxy)methyl]-1,3-propanediol; dinitrate

RDX

Cyclonite; hexogen; hexahydro-1,3,5-trinitro-1,3,5-triazine

Semtex

Composition of PETN (or RDX and PETN) with heavy oils and rubbers

TATP

Triacetone triperoxide

Tetryl

Methyl-2,4,6-trinitrophenylnitramine

TNT

2,4,6-Trinitrotoluene; 2-methyl-1,3,5-trinitrobenzene

Notes

Acknowledgements

Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. The authors gratefully acknowledge the support of this study by Eric Sanders.

Conflict of interest

The authors declare that they have no potential conflict of interest.

References

  1. 1.
    Brown KE, Greenfield MT, McGrane, SD, Moore, DS (2015) Advances in explosives analysis - part I: animal, chemical, ion, and mechanical methods. Anal Bioanal Chem. doi: 10.1007/s00216-015-9040-4
  2. 2.
    Zhong Y, Li MQ, Sun B, Wang J, Zhang F, Yu DY, Zhang Y, Liu JH (2012) Non-invasive investigation of liquid materials using energy dispersive X-ray scattering. Measurement 45(6):1540–1546. doi: 10.1016/j.measurement.2012.02.024 CrossRefGoogle Scholar
  3. 3.
    Wells K, Bradley DA (2012) A review of X-ray explosives detection techniques for checked baggage. Appl Radiat Isot 70(8):1729–1746. doi: 10.1016/j.apradiso.2012.01.011 CrossRefGoogle Scholar
  4. 4.
    Greenberg JA, Krishnamurthy K, Brady D (2013) Snapshot molecular imaging using coded energy-sensitive detection. Opt Express 21(21):25480–25491. doi: 10.1364/oe.21.025480 CrossRefGoogle Scholar
  5. 5.
    Harding G, Fleckenstein H, Kosciesza D, Olesinski S, Strecker H, Theedt T, Zienert G (2012) X-ray diffraction imaging with the multiple inverse Fan beam topology: principles, performance and potential for security screening. Appl Radiat Isot 70(7):1228–1237. doi: 10.1016/j.apradiso.2011.12.015 CrossRefGoogle Scholar
  6. 6.
    O'Flynn D, Reid CB, Christodoulou C, Wilson MD, Veale MC, Seller P, Hills D, Desai H, Wong B, Speller R (2013) Explosive detection using pixellated X-ray diffraction (PixD). Journal of Instrumentation 8. doi:10.1088/1748-0221/8/03/p03007Google Scholar
  7. 7.
    Crespy C, Duvauchelle P, Kaftandjian V, Soulez F, Ponard P (2010) Energy dispersive X-ray diffraction to identify explosive substances: Spectra analysis procedure optimization. Nuclear Instrum Methods Phys Res Sect Accelerators Spectrometers Detectors Assoc Equipment 623(3):1050–1060. doi: 10.1016/j.nima.2010.08.023 CrossRefGoogle Scholar
  8. 8.
    Greenberg JA, Brady DJ (2014) Structured illumination for compressive x-ray diffraction tomography. Computational Imaging Xii 9020. doi:10.1117/12.2048264Google Scholar
  9. 9.
    Evans P, Rogers K, Dicken A, Godber S, Prokopiou D (2014) X-ray diffraction tomography employing an annular beam. Opt Express 22(10):11930–11944. doi: 10.1364/oe.22.011930 CrossRefGoogle Scholar
  10. 10.
    Prokopiou D, Rogers K, Evans P, Godber S, Dicken A (2013) Discrimination of liquids by a focal construct X-ray diffraction geometry. Appl Radiat Isot 77:160–165. doi: 10.1016/j.apradiso.2013.03.051 CrossRefGoogle Scholar
  11. 11.
    Sun B, Li MQ, Zhang F, Zhong Y, Kang NS, Lu W, Liu JH (2010) The performance of a fast testing system for illicit materials detection based on energy-dispersive X-ray diffraction technique. Microchem J 95(2):293–297. doi: 10.1016/j.microc.2009.12.018 CrossRefGoogle Scholar
  12. 12.
    Dicken A, Rogers K, Evans P, Rogers J, Chan JW (2010) The separation of X-ray diffraction patterns for threat detection. Appl Radiat Isot 68(3):439–443. doi: 10.1016/j.apradiso.2009.11.072 CrossRefGoogle Scholar
  13. 13.
    Vila FD, Jach T, Elam WT, Rehr JJ, Denlinger JD (2011) X-ray emission spectroscopy of nitrogen-rich compounds. J Phys Chem A 115(15):3243–3250. doi: 10.1021/jp108539v CrossRefGoogle Scholar
  14. 14.
    McLeod JA, Kurmaev EZ, Sushko PV, Boyko TD, Levitsky IA, Moewes A (2012) Selective response of mesoporous silicon to adsorbants with nitro groups. Chem Eur J 18(10):2912–2922. doi: 10.1002/chem.201102084 CrossRefGoogle Scholar
  15. 15.
    Goldberg IG, Vila FD, Jach T (2012) Surface effects on the crystallization of cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) and the consequences for its N K X-ray emission spectrum. J Phys Chem A 116(40):9897–9899. doi: 10.1021/jp306978x CrossRefGoogle Scholar
  16. 16.
    Whetstone ZD, Kearfott KJ (2014) A review of conventional explosives detection using active neutron interrogation. J Radioanal Nucl Chem 301(3):629–639. doi: 10.1007/s10967-014-3260-5 CrossRefGoogle Scholar
  17. 17.
    McFee JE, Faust AA, Pastor KA (2013) Photoneutron spectroscopy using monoenergetic gamma rays for bulk explosives detection. Nucl Inst Methods Phys Res Section Accelerators Spectrometers Detectors Assoc Equip 704:131–139. doi: 10.1016/j.nima.2012.12.053 CrossRefGoogle Scholar
  18. 18.
    Yigang Y, Jianbo Y, Yuanjing L (2013) Fusion of X-ray imaging and photoneutron induced gamma analysis for contrabands detection. IEEE Trans Nucl Sci 60(2):1134–1139. doi: 10.1109/tns.2013.2248095 CrossRefGoogle Scholar
  19. 19.
    Skoulakis A, Androulakis GC, Clark EL, Hassan SM, Lee P, Chatzakis J, Bakarezos M, Dimitriou V, Petridis C, Papadogiannis NA, Tatarakis M (2014) A portable pulsed neutron generator. Int J Mod Phys: Conf Ser 27:1460127. doi: 10.1142/s2010194514601276
  20. 20.
    McFee JE, Faust AA, Andrews HR, Clifford ETH, Mosquera CM (2013) Performance of an improved thermal neutron activation detector for buried bulk explosives. Nucl Instrum Methods Phys Res Section a-Accelerators Spectrometers Detectors Assoc Equip 712:93–101. doi: 10.1016/j.nima.2013.02.008 CrossRefGoogle Scholar
  21. 21.
    Kettler J, Mauerhofer E, Steinbusch M (2013) Detection of unexploded ordnance by PGNAA based borehole-logging. J Radioanal Nucl Chem 295(3):2071–2075. doi: 10.1007/s10967-012-2215-y CrossRefGoogle Scholar
  22. 22.
    Batyaev VF, Belichenko SG, Bestaev RR, Gavryuchenkov AV (2014) Ultimate levels of explosives detection via tagged neutrons. Int J Mod Phys: Conf Ser 27:1460131. doi: 10.1142/s2010194514601318
  23. 23.
    Trofimov VA, Varentsova SA, Chen J (2010) Identification of explosive using the spectrum dynamics of reflected THz and GHz radiation. Millimetre Wave and Terahertz Sensors and Technology Iii 7837. doi:10.1117/12.864873Google Scholar
  24. 24.
    Trzcinski T, Palka N, Szustakowski M (2011) THz spectroscopy of explosive-related simulants and oxidizers. Bull Polish Acad Sci Techn Sci 59(4):445–447. doi: 10.2478/v10175-011-0056-4 Google Scholar
  25. 25.
    Walczakowski M, Palka N, Szustakowski M, Czerwinski A, Sypek M (2013) Detection of the THz waves from the 5-m distance. Millimetre Wave and Terahertz Sensors and Technology Vi 8900. doi:10.1117/12.2028852Google Scholar
  26. 26.
    Maestrojuan I, Palacios I, Etayo D, Iriarte JC, Teniente J, Ederra I, Gonzalo R (2011) Explosives Characterization in Terahertz Range. Millimetre Wave and Terahertz Sensors and Technology Iv 8188. doi:10.1117/12.898152Google Scholar
  27. 27.
    Etayo D, Maestrojuan I, Teniente J, Ederra I, Gonzalo R (2013) Experimental explosive characterization for counterterrorist investigation. J Infrared Millimeter Terahertz Waves 34(7–8):468–479. doi: 10.1007/s10762-013-9988-0 CrossRefGoogle Scholar
  28. 28.
    Sleiman JB, El Haddad J, Perraud JB, Bassel L, Bousquet B, Palka N, Mounaix P (2014) Qualitative and quantitative analysis of explosives by terahertz time-domain spectroscopy: Application to imaging. 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves. doi:10.1109/IRMMW-THz.2014.6956226Google Scholar
  29. 29.
    Barber J, Weatherall JC, Smith BT, Duffy S, Goettler SJ, Krauss RA (2010) Millimeter wave measurements of explosives and simulants. Proc of SPIE Passive Millimeter-Wave Imaging Technology XIII 7670:76700E-76700E-76707Google Scholar
  30. 30.
    van Rheenen AD, Haakestad MW (2011) Detection and identification of explosives hidden under barrier materials - what are the THz-technology challenges? Detection and Sensing of Mines, Explosive Objects, and Obscured Targets Xvi 8017. doi:10.1117/12.886108Google Scholar
  31. 31.
    Trofimov VA, Varentsova SA, Szustakowski M, Palka N (2012) Efficiency of the detection and identification of ceramic explosive using the reflected THz signal. Terahertz Physics, Devices, and Systems Vi: Advanced Applications in Industry and Defense 8363. doi:10.1117/12.919750Google Scholar
  32. 32.
    Choi J, Ryu SY, Kwon WS, Kim K-S, Kim S (2013) Compound explosives detection and component analysis via terahertz time-domain spectroscopy. J Opt Soc Korea 17(5):454–460. doi: 10.3807/josk.2013.17.5.454 CrossRefGoogle Scholar
  33. 33.
    Gavenda T, Kresalek V (2013) Terahertz time-domain spectroscopy for distinguishing different kinds of gunpowder. Millimetre Wave and Terahertz Sensors and Technology Vi 8900. doi:10.1117/12.2034126Google Scholar
  34. 34.
    Witko EM, Buchanan WD, Korter TM (2011) Terahertz spectroscopy and solid-state density functional theory simulations of the improvised explosive oxidizers potassium nitrate and ammonium nitrate. J Phys Chem A 115(44):12410–12418. doi: 10.1021/jp2075429 CrossRefGoogle Scholar
  35. 35.
    Khachatrian A, Melinger JS, Qadri SB (2012) Waveguide terahertz time-domain spectroscopy of ammonium nitrate polycrystalline films. Journal of Applied Physics 111 (9):-. doi:doi:http://dx.doi.org/ 10.1063/1.4709385
  36. 36.
    Witko EM, Korter TM (2012) Terahertz spectroscopy of the explosive taggant 2,3-dimethyl-2,3-dinitrobutane. J Phys Chem A 116(25):6879–6884. doi: 10.1021/jp302487t CrossRefGoogle Scholar
  37. 37.
    Kemp MC (2011) Explosives detection by terahertz spectroscopy-a bridge Too Far? Ieee Trans Terahertz Sci Technol 1(1):282–292. doi: 10.1109/tthz.2011.2159647 CrossRefGoogle Scholar
  38. 38.
    Palka N (2013) Identification of concealed materials, including explosives, by terahertz reflection spectroscopy. Opt Eng 53(3):031202–031202. doi: 10.1117/1.OE.53.3.031202 CrossRefGoogle Scholar
  39. 39.
    Palka N (2013) Detection of covered materials in the TDS-THz setup. Terahertz Physics, Devices, and Systems Vii: Advanced Applications in Industry and Defense 8716. doi:10.1117/12.2015373Google Scholar
  40. 40.
    Trofimov VA, Peskov NV, Kirillov DA (2012) Efficiency of using correlation function for estimation of probability of substance detection on the base of THz spectral dynamics. Terahertz Emitters, Receivers, and Applications Iii 8496. doi:10.1117/12.927441Google Scholar
  41. 41.
    Trofimov VA, Trofimov VV, Deng C, Zhao Y-m, Zhang C-l, Zhang X (2011) Possible way for increasing the quality of imaging from THz passive device. Optics and Photonics for Counterterrorism and Crime Fighting Vii Optical Materials in Defence Systems Technology Viii and Quantum-Physics-Based Information Security 8189. doi:10.1117/12.897900Google Scholar
  42. 42.
    Trofimov VA, Trofimov VV, Kuchik IE (2014) Temperature resolution enhancing of commercially available THz passive cameras due to computer processing of images. Passive and Active Millimeter-Wave Imaging Xvii 9078. doi:10.1117/12.2049413Google Scholar
  43. 43.
    Zhao R, Zhao Y-m, Deng C, Zhang C-l, Li Y (2014) Target Recognition in Passive Terahertz Image of Human Body. Infrared, Millimeter-Wave, and Terahertz Technologies Iii 9275. doi:10.1117/12.2073957Google Scholar
  44. 44.
    Henry SC, Schecklman S, Kniffin GP, Zurk LM, Chen A (2010) Measurement and Modeling of Rough Surface Effects on Terahertz Spectroscopy. Terahertz Technology and Applications Iii 7601. doi:10.1117/12.841054Google Scholar
  45. 45.
    Zurk LM, Henry SC, Schecklman S, Duncan DD (2010) Physics-based processing for terahertz reflection spectroscopy and imaging. Infrared, Millimeter Wave, and Terahertz Technologies 7854. doi:10.1117/12.870664Google Scholar
  46. 46.
    Schecklman S, Zurk LM, Henry S, Kniffin GP (2011) Terahertz material detection from diffuse surface scattering. Journal of Applied Physics 109 (9). doi:10.1063/1.3561806Google Scholar
  47. 47.
    Henry SC, Kniffin GP, Zurk LM (2012) 3-D broadband terahertz synthetic aperture imaging. 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves. doi:10.1109/IRMMW-THz.2012.6380366Google Scholar
  48. 48.
    Henry SC, Zurk LM, Schecklman S (2013) Terahertz spectral imaging using correlation processing. Ieee Trans Terahertz Sci Technol 3(4):486–493. doi: 10.1109/tthz.2013.2261065 CrossRefGoogle Scholar
  49. 49.
    Startsev MA, Elezzabi AY (2013) Terahertz frequency continuous-wave spectroscopy and imaging of explosive substances. ISRN Optics 2013:8. doi: 10.1155/2013/419507 CrossRefGoogle Scholar
  50. 50.
    Palka N, Szustakowski M, Kowalski M, Trzcinski T, Ryniec R, Piszczek M, Ciurapinski W, Zyczkowski M, Zagrajek P, Wrobel J (2012) THz spectroscopy and imaging in security applications. 2012 19th International Conference on Microwaves, Radar & Wireless Communications. doi:10.1109/mikon.2012.6233513Google Scholar
  51. 51.
    Carriere JTA, Havermeyer F, Heyler RA (2013) THz-Raman Spectroscopy for Explosives, Chemical and Biological Detection. Chemical, Biological, Radiological, Nuclear, and Explosives (Cbrne) Sensing Xiv 8710. doi: 10.1117/12.2018095
  52. 52.
    Heyler RA, Carriere JTA, Havermeyer F (2013) THz-Raman - Accessing molecular structure with Raman spectroscopy for enhanced chemical identification, analysis and monitoring. Next-Generation Spectroscopic Technologies Vi 8726. doi:10.1117/12.2018136Google Scholar
  53. 53.
    Carriere JTA, Havermeyer F, Heyler RA (2014) Improving Sensitivity and Source Attribution of Homemade Explosives with Low Frequency/THz-Raman (R) Spectroscopy. Chemical, Biological, Radiological, Nuclear, and Explosives (Cbrne) Sensing Xv 9073. doi: 10.1117/12.2053461
  54. 54.
    Lu W, Argyros A (2014) Terahertz spectroscopy and imaging with flexible tube-lattice fiber probe. J Lightwave Technol 32(23):4019–4025. doi: 10.1109/jlt.2014.2361145 Google Scholar
  55. 55.
    Perov AN, Zaytsev KI, Fokina IN, Karasik VE, Yakovlev EV, Yurchenko SO, Iop (2014) BWO based THz imaging system. 2nd Russia-Japan-USA Symposium on the Fundamental and Applied Problems of Terahertz Devices and Technologies (Rjus Teratech - 2013) 486. doi: 10.1088/1742-6596/486/1/012027
  56. 56.
    Simoens F, Arnaud A, Castelein P, Goudon V, Imperinetti P, Dera JL, Meilhan J, Buffet JLO, Pocas S, Maillou T, Hairault L, Gellie P, Barbieri S, Sirtori C (2010) Development of uncooled antenna-coupled microbolometer arrays for explosive detection and identification. Millimetre Wave and Terahertz Sensors and Technology Iii 7837. doi:10.1117/12.865189Google Scholar
  57. 57.
    Simoens F, Meilhan J, Delplanque B, Gidon S, Lasfargues G, Dera JL, Nguyen DT, Ouvrier-Buffet JL, Pocas S, Maillou T, Cathabard O, Barbieri S (2012) Real-time imaging with THz fully-customized uncooled amorphous-silicon microbolometer focal plane arrays. Terahertz Physics, Devices, and Systems Vi: Advanced Applications in Industry and Defense 8363. doi:10.1117/12.919185Google Scholar
  58. 58.
    Bolduc M, Terroux M, Tremblay B, Marchese L, Savard E, Doucet M, Oulachgar H, Alain C, Jerominek H, Bergeron A (2011) Noise-equivalent power characterization of an uncooled microbolometer-based THz imaging camera. Terahertz Physics, Devices, and Systems V: Advance Applications in Industry and Defense 8023. doi:10.1117/12.883507Google Scholar
  59. 59.
    Castro-Suarez JR, Pacheco-Londono LC, Ortiz-Rivera W, Velez-Reyes M, Diem M, Hernandez-Rivera SP (2011) Open Path FTIR Detection of Threat Chemicals in Air and on Surfaces. Infrared Technology and Applications Xxxvii 8012. doi:10.1117/12.884436Google Scholar
  60. 60.
    Bingham AL, Lucey PG, Akagi JT, Hinrichs JL, Knobbe ET (2014) LWIR hyperspectral micro-imager for detection of trace explosive particles. Next-Generation Spectroscopic Technologies Vii 9101. doi:10.1117/12.2050824Google Scholar
  61. 61.
    Theriault J-M, Montembeault Y, Lavoie H, Bouffard F, Fortin G, Lacasse P, Vallieres A, Puckrin E, Farley V, Chamberland D, Bubner T (2011) A novel infrared hyperspectral imager for passive standoff detection of explosives and explosive precursors. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XII 8018. doi: 10.1117/12.884327
  62. 62.
    Wagner J, Ostendorf R, Grahmann J, Merten A, Hugger S, Jarvis JP, Fuchs F, Boskovic D, Schenk H (2015) Widely tuneable quantum cascade lasers for spectroscopic sensing. Quantum Sensing and Nanophotonic Devices Xii 9370. doi:10.1117/12.2082794Google Scholar
  63. 63.
    Price SR, Anderson DT, Luke RH, Stone K, Keller JM (2013) Automatic detection system for buried explosive hazards in FL-LWIR based on soft feature extraction using a bank of Gabor energy filters. Detection and Sensing of Mines, Explosive Objects, and Obscured Targets Xviii 8709. doi:10.1117/12.2014781Google Scholar
  64. 64.
    Pacheco-Londono LC, Castro-Suarez JR, Aparicio-Bolanos J, Hernandez-Rivera SP (2013) Angular Dependence of Source-Target-Detector in Active Mode Standoff Infrared Detection. Sensors, and Command, Control, Communications, and Intelligence (C3i) Technologies for Homeland Security and Homeland Defense Xii 8711. doi: 10.1117/12.2016153
  65. 65.
    Zhang Z, Clewes RJ, Howle CR, Reid DT (2014) Active FTIR-based stand-off spectroscopy using a femtosecond optical parametric oscillator. Opt Lett 39(20):6005–6008. doi: 10.1364/ol.39.006005 CrossRefGoogle Scholar
  66. 66.
    Mukherjee A, Von der Porten S, Patel CKN (2010) Standoff detection of explosive substances at distances of up to 150 m. Appl Opt 49(11):2072–2078. doi: 10.1364/ao.49.002072 CrossRefGoogle Scholar
  67. 67.
    Fuchs F, Hugger S, Jarvis J, Blattmann V, Kinzer M, Yang QK, Ostendorf R, Bronner W, Driad R, Aidam R, Wagner J (2013) Infrared Hyperspectral Standoff Detection of Explosives. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIV 8710. doi: 10.1117/12.2015682
  68. 68.
    Fuchs F, Hugger S, Kinzer M, Yang QK, Bronner W, Aidam R, Degreif K, Rademacher S, Schnuerer F, Schweikert W (2012) Standoff detection of explosives with broad band tunable external cavity quantum cascade lasers. Quantum Sensing and Nanophotonic Devices Ix 8268. doi:10.1117/12.908119Google Scholar
  69. 69.
    Bernacki BE, Phillips MC (2010) Standoff hyperspectral imaging of explosives residues using broadly tunable external cavity quantum cascade laser illumination. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing Xi 7665. doi: 10.1117/12.849543
  70. 70.
    Degreif K, Rademacher S, Dasheva P, Fuchs F, Hugger S, Schnuerer F, Schweikert W (2011) Stand-off explosive detection on surfaces using multispectral MIR-Imaging. Quantum Sensing and Nanophotonic Devices Viii 7945. doi:10.1117/12.874044Google Scholar
  71. 71.
    Suter JD, Bernacki B, Phillips MC (2012) Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers. Appl Phys B-Lasers Optics 108(4):965–974. doi: 10.1007/s00340-012-5134-2 CrossRefGoogle Scholar
  72. 72.
    Macleod NA, Molero F, Weidmann D (2015) Broadband standoff detection of large molecules by mid-infrared active coherent laser spectrometry. Opt Express 23(2):912–928. doi: 10.1364/oe.23.000912 CrossRefGoogle Scholar
  73. 73.
    Boyson TK, Rittman DR, Spence TG, Calzada ME, Kallapur AG, Petersen IR, Kirkbride KP, Moore DS, Harb CC (2014) Pulsed quantum cascade laser based hypertemporal real-time headspace measurements. Opt Express 22(9):10519–10534. doi: 10.1364/oe.22.010519 CrossRefGoogle Scholar
  74. 74.
    Patel CKN (2011) Quantum Cascade Lasers: A Game Changer for Defense and Homeland Security IR Photonics. Micro- and Nanotechnology Sensors, Systems, and Applications Iii 8031. doi:10.1117/12.885806Google Scholar
  75. 75.
    Furstenberg R, Kendziora C, Papantonakis M, Viet N, McGill RA (2014) The challenge of changing signatures in infrared stand-off detection of trace explosives. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XV 9073. doi: 10.1117/12.2050621
  76. 76.
    Deutsch ER, Haibach FG, Mazurenko A (2012) Detection and Quantification of Explosives and CWAs using a Handheld Widely-Tunable Quantum Cascade Laser. Next-Generation Spectroscopic Technologies V 8374. doi:10.1117/12.919554Google Scholar
  77. 77.
    Fernandez A, de la Ossa M, Amigo JM, Garcia-Ruiz C (2014) Detection of residues from explosive manipulation by near infrared hyperspectral imaging: A promising forensic tool. Forensic Sci Int 242:228–235. doi: 10.1016/j.forsciint.2014.06.023 CrossRefGoogle Scholar
  78. 78.
    Fernandez de la Ossa MA, Garcia-Ruiz C, Amigo JM (2014) Near infrared spectral imaging for the analysis of dynamite residues on human handprints. Talanta 130:315–321. doi: 10.1016/j.talanta.2014.07.026 CrossRefGoogle Scholar
  79. 79.
    Gomer NR, Gardner CW (2014) STARR: shortwave-targeted agile Raman robot for the detection and identification of emplaced explosives. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XV 9073. doi: 10.1117/12.2050647
  80. 80.
    Kumar M, Islam MN, Terry FL Jr, Freeman MJ, Chan A, Neelakandan M, Manzur T (2012) Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source. Appl Opt 51(15):2794–2807. doi: 10.1364/ao.51.002794 CrossRefGoogle Scholar
  81. 81.
    Dubroca T, Guetard G, Hummel RE (2012) Influence of spatial differential reflection parameters on 2,4,6-trinitrotoluene (TNT) absorption spectra. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIII 8358. doi: 10.1117/12.918385
  82. 82.
    Dubroca T, Moyant K, Hummel RE (2013) Ultra-violet and visible absorption characterization of explosives by differential reflectometry. Spectrochim Acta Part A Mol Biomol Spectrosc 105:149–155. doi: 10.1016/j.saa.2012.11.090 CrossRefGoogle Scholar
  83. 83.
    Dubroca T, Brown G, Hummel RE (2014) Detection of explosives by differential hyperspectral imaging. Optical Engineering 53 (2). doi:10.1117/1.oe.53.2.021112Google Scholar
  84. 84.
    Buryakov IA, Buryakov TI, Matsaev VT (2014) Optical chemical sensors for the detection of explosives and associated substances. J Anal Chem 69(7):616–631. doi: 10.1134/s1061934814070041 CrossRefGoogle Scholar
  85. 85.
    Hu Z, Deibert BJ, Li J (2014) Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem Soc Rev 43(16):5815–5840. doi: 10.1039/C4CS00010B CrossRefGoogle Scholar
  86. 86.
    Xu H, Liu F, Cui Y, Chen B, Qian G (2011) A luminescent nanoscale metal-organic framework for sensing of nitroaromatic explosives. Chem Commun 47(11):3153–3155. doi: 10.1039/C0CC05166G CrossRefGoogle Scholar
  87. 87.
    Wu Z-F, Tan B, Feng M-L, Lan A-J, Huang X-Y (2014) A magnesium MOF as a sensitive fluorescence sensor for CS2 and nitroaromatic compounds. J Mater Chem A 2(18):6426–6431. doi: 10.1039/C3TA15071B CrossRefGoogle Scholar
  88. 88.
    Ma J, Lv L, Zou G, Zhang Q (2015) Fluorescent porous film modified polymer optical fiber via “click” chemistry: stable Dye dispersion and trace explosive detection. ACS Appl Mater Interfaces 7(1):241–249. doi: 10.1021/am505950c CrossRefGoogle Scholar
  89. 89.
    Sun X, Bruckner C, Nieh M-P, Lei Y (2014) A fluorescent polymer film with self-assembled three-dimensionally ordered nanopores: preparation, characterization and its application for explosives detection. J Mater Chem A 2(35):14613–14621. doi: 10.1039/C4TA02554G CrossRefGoogle Scholar
  90. 90.
    Ma H, Gao R, Yan D, Zhao J, Wei M (2013) Organic-inorganic hybrid fluorescent ultrathin films and their sensor application for nitroaromatic explosives. J Mater Chem C 1(26):4128–4137. doi: 10.1039/C3TC30142G CrossRefGoogle Scholar
  91. 91.
    Li H, Wang J, Pan Z, Cui L, Xu L, Wang R, Song Y, Jiang L (2011) Amplifying fluorescence sensing based on inverse opal photonic crystal toward trace TNT detection. J Mater Chem 21(6):1730–1735. doi: 10.1039/c0jm02554b CrossRefGoogle Scholar
  92. 92.
    Li X, Zhang Z, Tao L (2013) A novel array of chemiluminescence sensors for sensitive, rapid and high-throughput detection of explosive triacetone triperoxide at the scene. Biosens Bioelectron 47:356–360. doi: 10.1016/j.bios.2013.03.002 CrossRefGoogle Scholar
  93. 93.
    Shaw A, Calhoun RL (2012) Electrogenerated Chemiluminescence with Ruthenium Trisbipyridine and TATP. In: Mantz RA, Suroviec A (eds) Physical and Analytical Electrochemistry, vol 41. ECS Transactions, vol 27. pp 49–56. doi:10.1149/1.3692523Google Scholar
  94. 94.
    Shaw A, Lindhome P, Calhoun RL (2013) Electrogenerated Chemiluminescence (ECL) Quenching of Ru(bpy)(3)(2+) by the Explosives TATP and Tetryl. J Electrochem Soc 160(10):H782–H786. doi: 10.1149/2.005311jes CrossRefGoogle Scholar
  95. 95.
    Parajuli S, Miao W (2013) Sensitive Determination of Triacetone Triperoxide Explosives Using Electrogenerated Chemiluminescence. Anal Chem 85(16):8008–8015. doi: 10.1021/ac401962b CrossRefGoogle Scholar
  96. 96.
    Donaldson DN, Barnett NW, Agg KM, Graham D, Lenehan CE, Prior C, Lim KF, Francis PS (2012) Chemiluminescence detection of 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and related nitramine explosives. Talanta 88:743–748. doi: 10.1016/j.talanta.2011.11.051 CrossRefGoogle Scholar
  97. 97.
    Ni X, Zhao Y, Song Q (2015) Electrochemical reduction and in-situ electrochemiluminescence detection of nitroaromatic compounds. Electrochim Acta 164:31–37. doi: 10.1016/j.electacta.2015.02.174 CrossRefGoogle Scholar
  98. 98.
    Qi W, Xu M, Pang L, Liu Z, Zhang W, Majeed S, Xu G (2014) Electrochemiluminescence Detection of TNT by Resonance Energy Transfer through the Formation of a TNT-Amine Complex. Chem-A Eur J 20(16):4829–4835. doi: 10.1002/chem.201303710 CrossRefGoogle Scholar
  99. 99.
    Ma Y, Wang L (2014) Upconversion luminescence nanosensor for TNT selective and label-free quantification in the mixture of nitroaromatic explosives. Talanta 120:100–105. doi: 10.1016/j.talanta.2013.12.009 CrossRefGoogle Scholar
  100. 100.
    Tu N, Wang L (2013) Surface plasmon resonance enhanced upconversion luminescence in aqueous media for TNT selective detection. ChemCommun 49(56):6319–6321. doi: 10.1039/C3CC43146K Google Scholar
  101. 101.
    Fountain AW, Christesen SD, Moon RP, Guicheteau JA, Emmons ED (2014) Recent Advances and Remaining Challenges for the Spectroscopic Detection of Explosive Threats. Appl Spectrosc 68(8):795–811. doi: 10.1366/14-07560 CrossRefGoogle Scholar
  102. 102.
    Fountain AW, III, Guicheteau JA, Pearman WF, Chyba TH, Christesen SD (2010) Long Range Standoff Detection of Chemical, Biological and Explosive Hazards on Surfaces. Micro- and Nanotechnology Sensors, Systems, and Applications Ii 7679. doi:10.1117/12.851785Google Scholar
  103. 103.
    Lopez-Lopez M, Garcia-Ruiz C (2014) Infrared and Raman spectroscopy techniques applied to identification of explosives. Trac-Trends Anal Chem 54:36–44. doi: 10.1016/j.trac.2013.10.011 CrossRefGoogle Scholar
  104. 104.
    Forest R, Babin F, Gay D, Ho N, Pancrati O, Deblois S, Desilets S, Maheux J (2012) Use of a spectroscopic lidar for standoff explosives detection through Raman spectra. In: Fountain AW (ed) Chemical, Biological, Radiological, Nuclear, and Explosives, vol 8358. Proceedings of SPIE. doi:10.1117/12.918672Google Scholar
  105. 105.
    Ehlerding A, Johansson I, Wallin S, Ostmark H (2012) Resonance-enhanced Raman Spectroscopy on Explosives Vapor at Standoff Distances. International Journal of Spectroscopy:158715 (158719 pp.)-158715 (158719 pp.). doi: 10.1155/2012/158715
  106. 106.
    Ghosh M, Wang L, Asher SA (2012) Deep-Ultraviolet Resonance Raman Excitation Profiles of NH4NO3, PETN, TNT, HMX, and RDX. Appl Spectrosc 66(9):1013–1021. doi: 10.1366/12-06626 CrossRefGoogle Scholar
  107. 107.
    Hug WF, Bhartia R, Sijapati K, Beegle LW, Reid RD (2014) Improved sensing using simultaneous deep-UV Raman and fluorescence detection - II. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XV 9073. doi: 10.1117/12.2053069
  108. 108.
    Tuschel DD, Mikhonin AV, Lemoff BE, Asher SA (2010) Deep Ultraviolet Resonance Raman Excitation Enables Explosives Detection. Appl Spectrosc 64(4):425–432CrossRefGoogle Scholar
  109. 109.
    Yellampalle B, Lemoff BE (2013) Raman Albedo and Deep-UV Resonance Raman Signatures of Explosives. Active and Passive Signatures Iv 8734. doi:10.1117/12.2015951Google Scholar
  110. 110.
    Almaviva S, Angelini F, Chirico R, Palucci A, Nuvoli M, Schnuerer F, Schweikert W, Romolo FS (2014) Eye-safe UV Raman spectroscopy for remote detection of explosives and their precursors in fingerprint concentration. Optics and Photonics for Counterterrorism, Crime Fighting, and Defence X; and Optical Materials and Biomaterials in Security and Defence Systems Technology XI 9253. doi: 10.1117/12.2067292
  111. 111.
    Chirico R, Almaviva S, Colao F, Fiorani L, Nuvoli M, Schweiket W, Schnuerer F, Cassioli L, Grossi S, Mariani L, Angelini F, Menicucci I, Palucci A (2014) Proximal detection of energetic materials on fabrics by UV-Raman spectroscopy. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XV 9073. doi: 10.1117/12.2045572
  112. 112.
    Glimtoft M, Baath P, Saari H, Makynen J, Nasila A, Ostmark H (2014) Towards eye-safe standoff Raman imaging systems. Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIX 9072. doi:10.1117/12.2049676Google Scholar
  113. 113.
    Akeson M, Nordberg M, Ehlerding A, Nilsson L-E, Ostmark H, Strombeck P (2011) Picosecond laser pulses improves sensitivity in standoff explosive detection. Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVI 8017. doi:10.1117/12.883351Google Scholar
  114. 114.
    Shreve AP, Cherepy NJ, Mathies RA (1992) Effective rejection of fluorescence interference in Raman spectrosocpy using a shifted excitation difference technique. Appl Spectrosc 46(4):707–711CrossRefGoogle Scholar
  115. 115.
    Yellampalle B, McCormick W, Wu H-S, Sluch M, Martin R, Ice R, Lemoff BE (2014) High-sensitivity explosives detection using dual-excitation-wavelength resonance-Raman detector. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XV 9073. doi: 10.1117/12.2050441
  116. 116.
    Yellampalle B, Sluch M, Asher S, Lemoff B (2011) Multiple-Excitation-Wavelength Resonance-Raman Explosives Detection. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XII 8018. doi: 10.1117/12.887087
  117. 117.
    Yellampalle B, Sluch M, Wu H-S, Martin R, McCormick W, Ice R, Lemoff BE (2013) Dual-Excitation-Wavelength Resonance-Raman Explosives Detector. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIV 8710. doi: 10.1117/12.2015945
  118. 118.
    Moros J, Antonio Lorenzo J, Lucena P, Miguel Tobaria L, Javier Laserna J (2010) Simultaneous Raman Spectroscopy-Laser-induced Breakdown Spectroscopy for Instant Standoff Analysis of Explosives Using a Mobile Integrated Sensor Platform. Anal Chem 82(4):1389–1400. doi: 10.1021/ac902470v CrossRefGoogle Scholar
  119. 119.
    Moros J, Javier Laserna J (2015) Unveiling the identity of distant targets through advanced Raman-laser-induced breakdown spectroscopy data fusion strategies. Talanta 134:627–639. doi: 10.1016/j.talanta.2014.12.001 CrossRefGoogle Scholar
  120. 120.
    Desilets S, Ho N, Mathieu P, Simard JR, Puckrin E, Theriault JM, Lavoie H, Theberge F, Babin F, Gay D, Forest R, Maheux J, Roy G, Chateauneuf M (2011) Standoff detection of explosives, a challenging approach for optical technologies. Micro- and Nanotechnology Sensors, Systems, and Applications III 8031. doi:10.1117/12.885616Google Scholar
  121. 121.
    Misra AK, Sharma SK, Acosta TE, Porter JN, Lucey PG, Bates DE (2012) Portable standoff Raman system for fast detection of homemade explosives through glass, plastic and water. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIII 8358. doi: 10.1117/12.919647
  122. 122.
    Misra AK, Sharma SK, Acosta TE, Porter JN, Bates DE (2012) Single-Pulse Standoff Raman Detection of Chemicals from 120 m Distance During Daytime. Appl Spectrosc 66(11):1279–1285. doi: 10.1366/12-06617 CrossRefGoogle Scholar
  123. 123.
    Ortiz-Rivera W, Pacheco-Londono LC, Castro-Suarez JR, Felix-Rivera H, Hernandez-Rivera SP (2011) Vibrational Spectroscopy Standoff Detection of Threat Chemicals. Micro- and Nanotechnology Sensors, Systems, and Applications Iii 8031. doi:10.1117/12.884433Google Scholar
  124. 124.
    Pettersson A, Wallin S, Ostmark H, Ehlerding A, Johansson I, Nordberg M, Ellis H, Al-Khalili A (2010) EXPLOSIVES STANDOFF DETECTION USING RAMAN SPECTROSCOPY: FROM BULK TOWARDS TRACE DETECTION. Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XV 7664. doi:10.1117/12.852544Google Scholar
  125. 125.
    Wallin S, Pettersson A, Onnerud H, Ostmark H, Nordberg M, Ceco E, Ehlerding A, Johansson I, Kack P (2012) Possibilities for Standoff Raman Detection Applications for Explosives. In: Fountain AW (ed) Chemical, Biological, Radiological, Nuclear, and Explosives, vol 8358. Proceedings of SPIE. doi:10.1117/12.919144Google Scholar
  126. 126.
    Zachhuber B, Ostmark H, Carlsson T (2014) Spatially offset hyperspectral stand-off Raman imaging for explosive detection inside containers. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XV 9073. doi: 10.1117/12.2053251
  127. 127.
    Almeida MR, Correa DN, Zacca JJ, Lima Logrado LP, Poppi RJ (2015) Detection of explosives on the surface of banknotes by Raman hyperspectral imaging and independent component analysis. Anal Chim Acta 860:15–22. doi: 10.1016/j.aca.2014.12.034 CrossRefGoogle Scholar
  128. 128.
    Izake EL, Sundarajoo S, Olds W, Cletus B, Jaatinen E, Fredericks PM (2013) Standoff Raman spectrometry for the non-invasive detection of explosives precursors in highly fluorescing packaging. Talanta 103:20–27. doi: 10.1016/j.talanta.2012.09.055 CrossRefGoogle Scholar
  129. 129.
    Petterson IEI, Lopez-Lopez M, Garcia-Ruiz C, Gooijer C, Buijs JB, Ariese F (2011) Noninvasive Detection of Concealed Explosives: Depth Profiling through Opaque Plastics by Time-Resolved Raman Spectroscopy. Anal Chem 83(22):8517–8523. doi: 10.1021/ac2018102 CrossRefGoogle Scholar
  130. 130.
    Dogariu A (2013) Standoff detection and imaging of explosives using CARS. 2013 Conference on Lasers and Electro-OpticsGoogle Scholar
  131. 131.
    Portnov A, Bar I, Rosenwaks S (2010) Highly sensitive standoff detection of explosives via backward coherent anti-Stokes Raman scattering. Appl Phys B-Lasers Optics 98(2–3):529–535. doi: 10.1007/s00340-009-3709-3 CrossRefGoogle Scholar
  132. 132.
    Bremer MT, Wrzesinski PJ, Butcher N, Lozovoy VV, Dantus M (2011) Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering. Applied Physics Letters 99 (10). doi:10.1063/1.3636436Google Scholar
  133. 133.
    Moore DS, McGrane SD, Greenfield MT, Scharff RJ (2012) Optimal coherent control methods for explosives detection. Micro- and Nanotechnology Sensors, Systems, and Applications Iv 8373. doi:10.1117/12.920944Google Scholar
  134. 134.
    Moore DS, McGrane SD, Greenfield MT, Scharff RJ, Chalmers RE (2012) Use of the Gerchberg-Saxton algorithm in optimal coherent anti-Stokes Raman spectroscopy. Anal Bioanal Chem 402(1):423–428. doi: 10.1007/s00216-011-5348-x CrossRefGoogle Scholar
  135. 135.
    Moore DS, Rabitz H, McGrane SD, Greenfield MT, Scharff RJ, Chalmers RE, Roslund J (2011) Optimal Dynamic Detection of Explosives. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XII 8018. doi: 10.1117/12.882963
  136. 136.
    Bremer MT, Dantus M (2013) Standoff explosives trace detection and imaging by selective stimulated Raman scattering. Applied Physics Letters 103 (6). doi:10.1063/1.4817248Google Scholar
  137. 137.
    Dogariu A, Michael JB, Scully MO, Miles RB (2011) High-Gain Backward Lasing in Air. Science 331(6016):442–445. doi: 10.1126/science.1199492 CrossRefGoogle Scholar
  138. 138.
    Li D-W, Zhai W-L, Li Y-T, Long Y-T (2014) Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchim Acta 181(1–2):23–43. doi: 10.1007/s00604-013-1115-3 CrossRefGoogle Scholar
  139. 139.
    Upadhyayula VKK (2012) Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: A review. Anal Chim Acta 715:1–18. doi: 10.1016/j.aca.2011.12.008 CrossRefGoogle Scholar
  140. 140.
    Baker GA, Moore DS (2005) Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Anal Bioanal Chem 382(8):1751–1770. doi: 10.1007/s00216-005-3353-7 CrossRefGoogle Scholar
  141. 141.
    Hamad S, Podagatlapalli GK, Mohiddon MA, Rao SV (2015) Surface enhanced fluorescence from corroles and SERS studies of explosives using copper nanostructures. Chem Phys Lett 621:171–176. doi: 10.1016/j.cplett.2015.01.006 CrossRefGoogle Scholar
  142. 142.
    Podagatlapalli GK, Hamad S, Mohiddon MA, Rao SV (2014) Effect of oblique incidence on silver nanomaterials fabricated in water via ultrafast laser ablation for photonics and explosives detection. Appl Surf Sci 303:217–232. doi: 10.1016/j.apsusc.2014.02.152 CrossRefGoogle Scholar
  143. 143.
    Jamil AKM, Izake EL, Sivanesan A, Fredericks PM (2015) Rapid detection of TNT in aqueous media by selective label free surface enhanced Raman spectroscopy. Talanta 134:732–738. doi: 10.1016/j.talanta.2014.12.022 CrossRefGoogle Scholar
  144. 144.
    Almaviva S, Botti S, Cantarini L, Fantoni R, Lecci S, Palucci A, Puiu A, Rufoloni A (2014) Ultrasensitive RDX detection with commercial SERS substrates. J Raman Spectrosc 45(1):41–46. doi: 10.1002/jrs.4413 CrossRefGoogle Scholar
  145. 145.
    Almaviva S, Botti S, Cantarini L, Palucci A, Puiu A, Rufoloni A, Landstrom L, Romolo FS (2012) Trace detection of explosives by Surface Enhanced Raman Spectroscopy. Optics and Photonics for Counterterrorism, Crime Fighting, and Defence Viii 8546. doi:10.1117/12.970300Google Scholar
  146. 146.
    Botti S, Cantarini L, Almaviva S, Puiu A, Rufoloni A (2014) Assessment of SERS activity and enhancement factors for highly sensitive gold coated substrates probed with explosive molecules. Chem Phys Lett 592:277–281. doi: 10.1016/j.cplett.2013.12.063 CrossRefGoogle Scholar
  147. 147.
    Botti S, Cantarini L, Palucci A (2010) Surface-enhanced Raman spectroscopy for trace-level detection of explosives. J Raman Spectrosc 41(8):866–869. doi: 10.1002/jrs.2649 CrossRefGoogle Scholar
  148. 148.
    Buettner F, Hagemann J, Wellhausen M, Funke S, Lenth C, Rotter F, Gundrum L, Plachetka U, Moormann C, Strube M, Walte A, Wackerbarth H (2013) Surface Enhanced Vibrational Spectroscopy for the Detection of Explosives. Electro-Optical and Infrared Systems: Technology and Applications X 8896. doi:10.1117/12.2028736Google Scholar
  149. 149.
    Holthoff EL, Stratis-Cullum DN, Hankus ME (2011) A Nanosensor for TNT Detection Based on Molecularly Imprinted Polymers and Surface Enhanced Raman Scattering. Sensors 11(3):2700–2714. doi: 10.3390/s110302700 CrossRefGoogle Scholar
  150. 150.
    Raza A, Saha B (2014) In situ silver nanoparticles synthesis in agarose film supported on filter paper and its application as highly efficient SERS test stripes. Forensic Sci Int 237:E42–E46. doi: 10.1016/j.forsciint.2014.01.019 CrossRefGoogle Scholar
  151. 151.
    Hatab NA, Eres G, Hatzinger PB, Gu B (2010) Detection and analysis of cyclotrimethylenetrinitramine (RDX) in environmental samples by surface-enhanced Raman spectroscopy. J Raman Spectrosc 41(10):1131–1136. doi: 10.1002/jrs.2574 CrossRefGoogle Scholar
  152. 152.
    Mahmoud KA, Zourob M (2013) Fe3O4/Au nanoparticles/lignin modified microspheres as effectual surface enhanced Raman scattering (SERS) substrates for highly selective and sensitive detection of 2,4,6-trinitrotoluene (TNT). The Analyst 138(9):2712–2719. doi: 10.1039/c3an00261f CrossRefGoogle Scholar
  153. 153.
    Xu Z, Meng X (2012) Detection of 3-nitro-1,2,4-triazol-3-one (NTO) by surface-enhanced Raman spectroscopy. Vib Spectrosc 63:390–395. doi: 10.1016/j.vibspec.2012.08.008 CrossRefGoogle Scholar
  154. 154.
    Zhang C, Wang K, Han D, Pang Q (2014) Surface enhanced Raman scattering (SERS) spectra of trinitrotoluene in silver colloids prepared by microwave heating method. Spectrochim Acta Part A (Mol Biomol Spectrosc) 122:387–391. doi: 10.1016/j.saa.2013.11.066 CrossRefGoogle Scholar
  155. 155.
    Zachhuber B, Carrillo-Carrion C, Simonet Suau BM, Lendl B (2012) Quantification of DNT isomers by capillary liquid chromatography using at-line SERS detection or multivariate analysis of SERS spectra of DNT isomer mixtures. J Raman Spectrosc 43(8):998–1002. doi: 10.1002/jrs.3149 CrossRefGoogle Scholar
  156. 156.
    Talian I, Huebner J (2013) Separation followed by direct SERS detection of explosives on a novel black silicon multifunctional nanostructured surface prepared in a microfluidic channel. J Raman Spectrosc 44(4):536–539. doi: 10.1002/jrs.4237 CrossRefGoogle Scholar
  157. 157.
    Spicer JB, Dagdigian P, Osiander R, Miragliotta J, Zhang XC, Kersting R, Crosley D, Hanson R, Jeffries J (2003) Overview: MURI Center on spectroscopic and time domain detection of trace explosives in condensed and vapor phases. In: Harmon RS, Holloway JH, Broach JT (eds) Detection and Remediation Technologies for Mines and Minelike Targets VIII, Pts 1 and 2, vol 5089. Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE). pp 1088–1094. doi: 10.1117/12.487531
  158. 158.
    Wojtas J, Mikolajczyk J, Bielecki Z (2013) Aspects of the Application of Cavity Enhanced Spectroscopy to Nitrogen Oxides Detection. Sensors 13(6):7570–7598. doi: 10.3390/s130607570 CrossRefGoogle Scholar
  159. 159.
    Caygill JS, Davis F, Higson SPJ (2012) Current trends in explosive detection techniques. Talanta 88:14–29. doi: 10.1016/j.talanta.2011.11.043 CrossRefGoogle Scholar
  160. 160.
    Taha YM, Odame-Ankrah CA, Osthoff HD (2013) Real-time vapor detection of nitroaromatic explosives by catalytic thermal dissociation blue diode laser cavity ring-down spectroscopy. Chem Phys Lett 582:15–20. doi: 10.1016/j.cplett.2013.07.040 CrossRefGoogle Scholar
  161. 161.
    Wojtas J, Stacewicz T, Bielecki Z, Rutecka B, Medrzycki R, Mikolajczyk J (2013) Towards optoelectronic detection of explosives. Opto-Electronics Rev 21(2):210–219. doi: 10.2478/s11772-013-0082-x CrossRefGoogle Scholar
  162. 162.
    Snels M, Venezia T, Belfiore L (2010) Detection and identification of TNT, 2,4-DNT and 2,6-DNT by near-infrared cavity ringdown spectroscopy. Chem Phys Lett 489(1–3):134–140. doi: 10.1016/j.cplett.2010.02.065 CrossRefGoogle Scholar
  163. 163.
    Vogelsang M, Welsch T, Jones H (2010) A free-flowing soap film combined with cavity ring-down spectroscopy as a detection system for liquid chromatography. J Chromatogr A 1217(19):3316–3320. doi: 10.1016/j.chroma.2009.10.053 CrossRefGoogle Scholar
  164. 164.
    Harb CC, Boyson TK, Kallapur AG, Petersen IR, Calzada ME, Spence TG, Kirkbride KP, Moore DS (2012) Pulsed quantum cascade laser-based CRDS substance detection: real-time detection of TNT. Opt Express 20(14):15489–15502. doi: 10.1364/oe.20.015489 CrossRefGoogle Scholar
  165. 165.
    Johnson JB, Allen SD, Merten J, Johnson L, Pinkham D, Reeve SW (2014) Standoff Methods for the Detection of Threat Agents: A Review of Several Promising Laser-Based Techniques. J Spectrosc. doi: 10.1155/2014/613435 Google Scholar
  166. 166.
    Gottfried JL, De Lucia FC, Munson CA, Miziolek AW (2009) Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects. Anal Bioanal Chem 395(2):283–300. doi: 10.1007/s00216-009-2802-0 CrossRefGoogle Scholar
  167. 167.
    Hahn DW, Omenetto N (2012) Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields. Appl Spectrosc 66(4):347–419. doi: 10.1366/11-06574 CrossRefGoogle Scholar
  168. 168.
    Skvortsov LA (2012) Laser methods for detecting explosive residues on surfaces of distant objects. Quantum Electron 42(1):1–11. doi: 10.1070/QE2012v042n01ABEH014724 CrossRefGoogle Scholar
  169. 169.
    Fortes FJ, Moros J, Lucena P, Cabalin LM, Laserna JJ (2013) Laser-Induced Breakdown Spectroscopy. Anal Chem 85(2):640–669. doi: 10.1021/ac303220r CrossRefGoogle Scholar
  170. 170.
    Leahy-Hoppa MR, Miragliotta J, Osiander R, Burnett J, Dikmelik Y, McEnnis C, Spicer JB (2010) Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy. Sensors 10(5):4342–4372. doi: 10.3390/s100504342 CrossRefGoogle Scholar
  171. 171.
    Lazic V, Palucci A, Jovicevic S, Carpanese M (2011) Detection of explosives in traces by laser induced breakdown spectroscopy: Differences from organic interferents and conditions for a correct classification. Spectrochim Acta Part B-Atomic Spectrosc 66(8):644–655. doi: 10.1016/j.sab.2011.07.003 CrossRefGoogle Scholar
  172. 172.
    Carter S, Fisher AS, Hinds MW, Lancaster S, Marshall J (2013) Atomic spectrometry update. Review of advances in the analysis of metals, chemicals and materials. J Anal At Spectrom 28(12):1814–1869. doi: 10.1039/c3ja90051g CrossRefGoogle Scholar
  173. 173.
    Lucena P, Gaona I, Moros J, Laserna JJ (2013) Location and detection of explosive-contaminated human fingerprints on distant targets using standoff laser-induced breakdown spectroscopy. Spectrochim Acta Part B-Atomic Spectrosc 85:71–77. doi: 10.1016/j.sab.2013.04.003 CrossRefGoogle Scholar
  174. 174.
    De Lucia FC, Gottfried JL (2012) Classification of explosive residues on organic substrates using laser induced breakdown spectroscopy. Appl Opt 51(7):B83–B92. doi: 10.1364/ao.51.000b83 CrossRefGoogle Scholar
  175. 175.
    Gottfried JL (2013) Influence of metal substrates on the detection of explosive residues with laser-induced breakdown spectroscopy. Appl Opt 52(4):B10–B19. doi: 10.1364/ao.52.000b10 CrossRefGoogle Scholar
  176. 176.
    Fernandez-Bravo A, Lucena P, Laserna JJ (2012) Selective Sampling and Laser-Induced Breakdown Spectroscopy (LIBS) Analysis of Organic Explosive Residues on Polymer Surfaces. Appl Spectrosc 66(10):1197–1203. doi: 10.1366/12-06697 CrossRefGoogle Scholar
  177. 177.
    Handke J, Duschek F, Gruenewald K, Pargmann C (2011) Standoff Detection Applying Laser-Induced Breakdown Spectroscopy at the DLR Laser Test Range. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XII 8018. doi: 10.1117/12.886543
  178. 178.
    Wang QQ, Liu K, Zhao H, Ge CH, Huang ZW (2012) Detection of explosives with laser-induced breakdown spectroscopy. Front Phys 7(6):701–707. doi: 10.1007/s11467-012-0272-x CrossRefGoogle Scholar
  179. 179.
    Delgado T, Vadillo JM, Javier Laserna J (2014) Primary and recombined emitting species in laser-induced plasmas of organic explosives in controlled atmospheres. J Anal At Spectrom 29(9):1675–1685. doi: 10.1039/c4ja00157e CrossRefGoogle Scholar
  180. 180.
    Sreedhar S, Rao EN, Kumar GM, Tewari SP, Rao SV (2013) Investigation of molecular and elemental species dynamics in NTO, TNT, and ANTA using femtosecond LIBS technique. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIV 8710. doi: 10.1117/12.2015685
  181. 181.
    Sreedhar S, Rao EN, Kumar GM, Tewari SP, Rao SV (2013) Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy. Spectrochim Acta Part B-Atomic Spectrosc 87:121–129. doi: 10.1016/j.sab.2013.05.006 CrossRefGoogle Scholar
  182. 182.
    Freeman JR, Diwakar PK, Harilal SS, Hassanein A (2014) Improvements in discrimination of bulk and trace elements in long-wavelength double pulse LIBS. Spectrochim Acta Part B-Atomic Spectrosc 102:36–41. doi: 10.1016/j.sab.2014.10.008 CrossRefGoogle Scholar
  183. 183.
    Yang G, Lin QY, Ding Y, Tian D, Duan YX (2015) Laser Induced Breakdown Spectroscopy Based on Single Beam Splitting and Geometric Configuration for Effective Signal Enhancement. Scientific Reports 5. doi:10.1038/srep07625Google Scholar
  184. 184.
    Huang H, Yang L-M, Liu J (2012) Femtosecond fiber-laser-based laser-induced breakdown spectroscopy. In: Fountain AW (ed) Chemical, Biological, Radiological, Nuclear, and Explosives, vol 8358. Proceedings of SPIE. doi:835817  10.1117/12.918615
  185. 185.
    Ahmido T, Ting A, Misra P (2013) Femtosecond laser-induced breakdown spectroscopy of surface nitrate chemicals. Appl Opt 52(13):3048–3057. doi: 10.1364/ao.52.003048 CrossRefGoogle Scholar
  186. 186.
    Bauer AJR, Farrington MP, Sorauf K, Miziolek AW (2014) Laser-induced Breakdown Spectroscopy and Spectral Analysis of Improvised Explosive Materials. Next-Generation Spectroscopic Technologies Vii 9101. doi:10.1117/12.2057930Google Scholar
  187. 187.
    Yang CSC, Brown EE, Hommerich U, Jin F, Trivedi SB, Samuels AC, Snyder AP (2012) Long-Wave, Infrared Laser-Induced Breakdown (LIBS) Spectroscopy Emissions from Energetic Materials. Appl Spectrosc 66(12):1397–1402. doi: 10.1366/12-06700 CrossRefGoogle Scholar
  188. 188.
    Morton KD, Jr., Torrione PA, Collins L (2011) Signal Processing for the Detection of Explosive Residues on Varying Substrates using Laser Induced Breakdown Spectroscopy. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XII 8018. doi: 10.1117/12.885111
  189. 189.
    Moros J, Serrano J, Sanchez C, Macias J, Laserna JJ (2012) New chemometrics in laser-induced breakdown spectroscopy for recognizing explosive residues. J Anal At Spectrom 27(12):2111–2122. doi: 10.1039/c2ja30230f CrossRefGoogle Scholar
  190. 190.
    El Haddad J, Canioni L, Bousquet B (2014) Good practices in LIBS analysis: Review and advices. Spectrochim Acta Part B-Atomic Spectrosc 101:171–182. doi: 10.1016/j.sab.2014.08.039 CrossRefGoogle Scholar
  191. 191.
    De Lucia FC, Gottfried JL (2013) Influence of Molecular Structure on the Laser-Induced Plasma Emission of the Explosive RDX and Organic Polymers. J Phys Chem A 117(39):9555–9563. doi: 10.1021/jp312236h CrossRefGoogle Scholar
  192. 192.
    Serrano J, Moros J, Sanchez C, Macias J, Laserna JJ (2014) Advanced recognition of explosives in traces on polymer surfaces using LIBS and supervised learning classifiers. Anal Chim Acta 806:107–116. doi: 10.1016/j.aca.2013.11.035 CrossRefGoogle Scholar
  193. 193.
    Matroodi F, Tavassoli SH (2014) Simultaneous Raman and laser-induced breakdown spectroscopy by a single setup. Appl Phys B-Lasers Optics 117(4):1081–1089. doi: 10.1007/s00340-014-5929-4 CrossRefGoogle Scholar
  194. 194.
    Moros J, Lorenzo JA, Laserna JJ (2011) Standoff detection of explosives: critical comparison for ensuing options on Raman spectroscopy-LIBS sensor fusion. Anal Bioanal Chem 400(10):3353–3365. doi: 10.1007/s00216-011-4999-y CrossRefGoogle Scholar
  195. 195.
    Moros J, Laserna JJ (2011) New Raman - Laser induced breakdown spectroscopy identity of explosives using parametric data fusion on an integrated sensing platform. Anal Chem 83:6275–6285. doi: 10.1021/ac2009433 CrossRefGoogle Scholar
  196. 196.
    Moros J, Serrano J, Gallego FJ, Macias J, Laserna JJ (2013) Recognition of explosives fingerprints on objects for courier services using machine learning methods and laser-induced breakdown spectroscopy. Talanta 110:108–117. doi: 10.1016/j.talanta.2013.02.026 CrossRefGoogle Scholar
  197. 197.
    Fortes FJ, Laserna JJ (2010) The development of fieldable laser-induced breakdown spectrometer: No limits on the horizon. Spectrochim Acta Part B-Atomic Spectrosc 65(12):975–990. doi: 10.1016/j.sab.2010.11.009 CrossRefGoogle Scholar
  198. 198.
  199. 199.
    LaserSec iLIBS EngineGoogle Scholar
  200. 200.
    Haisch C (2012) Photoacoustic spectroscopy for analytical measurements. Measurement Science & Technology 23 (1). doi:10.1088/0957-0233/23/1/012001Google Scholar
  201. 201.
    Chien H-T, Wang K, Sheen S-H, Raptis ACP (2012) Photoacoustic Spectroscopy (PAS) System for Remote Detection of Explosives, Chemicals and Special Nuclear Materials. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIII 8358. doi: 10.1117/12.919351
  202. 202.
    Chen X, Guo D, Choa FS, Wang CC, Trivedi S, Snyder AP, Ru GJF (2013) Standoff photoacoustic detection of explosives using quantum cascade laser and an ultrasensitive microphone. Appl Opt 52(12):2626–2632. doi: 10.1364/ao.52.002626 CrossRefGoogle Scholar
  203. 203.
    Patimisco P, Scamarcio G, Tittel FK, Spagnolo V (2014) Quartz-Enhanced Photoacoustic Spectroscopy: A Review. Sensors 14(4):6165–6206. doi: 10.3390/s140406165 CrossRefGoogle Scholar
  204. 204.
    Sausa RC, Cabalo JB (2012) The Detection of Energetic Materials by Laser Photoacoustic Overtone Spectroscopy. Appl Spectrosc 66(9):993–998. doi: 10.1366/12-06699 CrossRefGoogle Scholar
  205. 205.
    Bauer C, Willer U, Schade W (2010) Use of quantum cascade lasers for detection of explosives: progress and challenges. Optical Engineering 49 (11). doi:10.1117/1.3498771Google Scholar
  206. 206.
    Choa F-S (2014) Chemical and explosive detections using photo-acoustic effect and quantum cascade lasers. Quantum Sensing and Nanophotonic Devices Xi 8993. doi:10.1117/12.2032026Google Scholar
  207. 207.
    Van Neste CW, Liu X, Gupta M, Kim S, Tsui Y, Thundat T (2012) Standoff detection of explosive residues on unknown surfaces. Micro- and Nanotechnology Sensors, Systems, and Applications Iv 8373. doi:10.1117/12.920510Google Scholar
  208. 208.
    Dongkyu L, Seonghwan K, Van Neste CW, Moonchan L, Sangmin J, Thundat T (2014) Photoacoustic spectroscopy of surface adsorbed molecules using a nanostructured coupled resonator array. Nanotechnology 25 (3):035501 (035506 pp.)-035501 (035506 pp.). doi: 10.1088/0957-4484/25/3/035501
  209. 209.
    Haupt R (2013) Photoacoustic sensing of explosives.Google Scholar
  210. 210.
    Skvortsov LA, Maksimov EM (2010) Application of laser photothermal spectroscopy for standoff detection of trace explosive residues on surfaces. Quantum Electron 40(7):565–578. doi: 10.1070/QE2010v040n07ABEH014334 CrossRefGoogle Scholar
  211. 211.
    Sharma RC, Kumar D, Bhardwaj N, Gupta S, Chandra H, Maini AK (2013) Portable detection system for standoff sensing of explosives and hazardous materials. Opt Commun 309:44–49. doi: 10.1016/j.optcom.2013.06.025 CrossRefGoogle Scholar
  212. 212.
    Willer U, Schade W (2009) Photonic sensor devices for explosive detection. Anal Bioanal Chem 395(2):275–282. doi: 10.1007/s00216-009-2934-2 CrossRefGoogle Scholar
  213. 213.
    Giubileo G, Colao F, Puiu A (2012) Identification of standard explosive traces by infrared laser spectroscopy: PCA on LPAS data. Laser Phys 22(6):1033–1037. doi: 10.1134/s1054660x12060035 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2015

Authors and Affiliations

  • Kathryn E. Brown
    • 1
  • Margo T. Greenfield
    • 1
  • Shawn D. McGrane
    • 1
  • David S. Moore
    • 1
    Email author
  1. 1.Los Alamos National LaboratoryShock and Detonation Physics GroupLos Alamos,USA

Personalised recommendations