Skip to main content
Log in

Advances in explosives analysis—part II: photon and neutron methods

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The number and capability of explosives detection and analysis methods have increased dramatically since publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis [Moore DS, Goodpaster JV, Anal Bioanal Chem 395:245–246, 2009]. Here we review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. Part I discussed methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers, electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. This part, Part II, will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AN:

Ammonium nitrate

ANTA:

3-Amino-5-nitro-1,2,4-triazole

DNB:

Dinitrobenzene (isomers 1,3-DNB and 1,4-DNB)

DNT:

Dinitrotoluene (isomers 2,4-DNT and 2,6-DNT)

FOX-7:

1,1-Diamino-2,2-dinitroethene (DADNE)

HME:

Homemade explosive

HMTD:

Hexamethylene triperoxide diamine

HMX:

Octagen; octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

IED:

Improvised explosive device

Picric acid:

2,4,6-Trinitrophenol

NG:

Nitroglycerine; nitro; glyceryl trinitrate; RNG; trinitroglycerine

NTO:

Nitrotriazalone

PETN:

Pentaerythritol tetranitrate; 2,2-bis[(nitroxy)methyl]-1,3-propanediol; dinitrate

RDX:

Cyclonite; hexogen; hexahydro-1,3,5-trinitro-1,3,5-triazine

Semtex:

Composition of PETN (or RDX and PETN) with heavy oils and rubbers

TATP:

Triacetone triperoxide

Tetryl:

Methyl-2,4,6-trinitrophenylnitramine

TNT:

2,4,6-Trinitrotoluene; 2-methyl-1,3,5-trinitrobenzene

References

  1. Brown KE, Greenfield MT, McGrane, SD, Moore, DS (2015) Advances in explosives analysis - part I: animal, chemical, ion, and mechanical methods. Anal Bioanal Chem. doi:10.1007/s00216-015-9040-4

  2. Zhong Y, Li MQ, Sun B, Wang J, Zhang F, Yu DY, Zhang Y, Liu JH (2012) Non-invasive investigation of liquid materials using energy dispersive X-ray scattering. Measurement 45(6):1540–1546. doi:10.1016/j.measurement.2012.02.024

    Article  Google Scholar 

  3. Wells K, Bradley DA (2012) A review of X-ray explosives detection techniques for checked baggage. Appl Radiat Isot 70(8):1729–1746. doi:10.1016/j.apradiso.2012.01.011

    Article  CAS  Google Scholar 

  4. Greenberg JA, Krishnamurthy K, Brady D (2013) Snapshot molecular imaging using coded energy-sensitive detection. Opt Express 21(21):25480–25491. doi:10.1364/oe.21.025480

    Article  CAS  Google Scholar 

  5. Harding G, Fleckenstein H, Kosciesza D, Olesinski S, Strecker H, Theedt T, Zienert G (2012) X-ray diffraction imaging with the multiple inverse Fan beam topology: principles, performance and potential for security screening. Appl Radiat Isot 70(7):1228–1237. doi:10.1016/j.apradiso.2011.12.015

    Article  CAS  Google Scholar 

  6. O'Flynn D, Reid CB, Christodoulou C, Wilson MD, Veale MC, Seller P, Hills D, Desai H, Wong B, Speller R (2013) Explosive detection using pixellated X-ray diffraction (PixD). Journal of Instrumentation 8. doi:10.1088/1748-0221/8/03/p03007

  7. Crespy C, Duvauchelle P, Kaftandjian V, Soulez F, Ponard P (2010) Energy dispersive X-ray diffraction to identify explosive substances: Spectra analysis procedure optimization. Nuclear Instrum Methods Phys Res Sect Accelerators Spectrometers Detectors Assoc Equipment 623(3):1050–1060. doi:10.1016/j.nima.2010.08.023

    Article  CAS  Google Scholar 

  8. Greenberg JA, Brady DJ (2014) Structured illumination for compressive x-ray diffraction tomography. Computational Imaging Xii 9020. doi:10.1117/12.2048264

  9. Evans P, Rogers K, Dicken A, Godber S, Prokopiou D (2014) X-ray diffraction tomography employing an annular beam. Opt Express 22(10):11930–11944. doi:10.1364/oe.22.011930

    Article  CAS  Google Scholar 

  10. Prokopiou D, Rogers K, Evans P, Godber S, Dicken A (2013) Discrimination of liquids by a focal construct X-ray diffraction geometry. Appl Radiat Isot 77:160–165. doi:10.1016/j.apradiso.2013.03.051

    Article  CAS  Google Scholar 

  11. Sun B, Li MQ, Zhang F, Zhong Y, Kang NS, Lu W, Liu JH (2010) The performance of a fast testing system for illicit materials detection based on energy-dispersive X-ray diffraction technique. Microchem J 95(2):293–297. doi:10.1016/j.microc.2009.12.018

    Article  CAS  Google Scholar 

  12. Dicken A, Rogers K, Evans P, Rogers J, Chan JW (2010) The separation of X-ray diffraction patterns for threat detection. Appl Radiat Isot 68(3):439–443. doi:10.1016/j.apradiso.2009.11.072

    Article  CAS  Google Scholar 

  13. Vila FD, Jach T, Elam WT, Rehr JJ, Denlinger JD (2011) X-ray emission spectroscopy of nitrogen-rich compounds. J Phys Chem A 115(15):3243–3250. doi:10.1021/jp108539v

    Article  CAS  Google Scholar 

  14. McLeod JA, Kurmaev EZ, Sushko PV, Boyko TD, Levitsky IA, Moewes A (2012) Selective response of mesoporous silicon to adsorbants with nitro groups. Chem Eur J 18(10):2912–2922. doi:10.1002/chem.201102084

    Article  CAS  Google Scholar 

  15. Goldberg IG, Vila FD, Jach T (2012) Surface effects on the crystallization of cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) and the consequences for its N K X-ray emission spectrum. J Phys Chem A 116(40):9897–9899. doi:10.1021/jp306978x

    Article  CAS  Google Scholar 

  16. Whetstone ZD, Kearfott KJ (2014) A review of conventional explosives detection using active neutron interrogation. J Radioanal Nucl Chem 301(3):629–639. doi:10.1007/s10967-014-3260-5

    Article  CAS  Google Scholar 

  17. McFee JE, Faust AA, Pastor KA (2013) Photoneutron spectroscopy using monoenergetic gamma rays for bulk explosives detection. Nucl Inst Methods Phys Res Section Accelerators Spectrometers Detectors Assoc Equip 704:131–139. doi:10.1016/j.nima.2012.12.053

    Article  CAS  Google Scholar 

  18. Yigang Y, Jianbo Y, Yuanjing L (2013) Fusion of X-ray imaging and photoneutron induced gamma analysis for contrabands detection. IEEE Trans Nucl Sci 60(2):1134–1139. doi:10.1109/tns.2013.2248095

    Article  CAS  Google Scholar 

  19. Skoulakis A, Androulakis GC, Clark EL, Hassan SM, Lee P, Chatzakis J, Bakarezos M, Dimitriou V, Petridis C, Papadogiannis NA, Tatarakis M (2014) A portable pulsed neutron generator. Int J Mod Phys: Conf Ser 27:1460127. doi:10.1142/s2010194514601276

  20. McFee JE, Faust AA, Andrews HR, Clifford ETH, Mosquera CM (2013) Performance of an improved thermal neutron activation detector for buried bulk explosives. Nucl Instrum Methods Phys Res Section a-Accelerators Spectrometers Detectors Assoc Equip 712:93–101. doi:10.1016/j.nima.2013.02.008

    Article  CAS  Google Scholar 

  21. Kettler J, Mauerhofer E, Steinbusch M (2013) Detection of unexploded ordnance by PGNAA based borehole-logging. J Radioanal Nucl Chem 295(3):2071–2075. doi:10.1007/s10967-012-2215-y

    Article  CAS  Google Scholar 

  22. Batyaev VF, Belichenko SG, Bestaev RR, Gavryuchenkov AV (2014) Ultimate levels of explosives detection via tagged neutrons. Int J Mod Phys: Conf Ser 27:1460131. doi:10.1142/s2010194514601318

  23. Trofimov VA, Varentsova SA, Chen J (2010) Identification of explosive using the spectrum dynamics of reflected THz and GHz radiation. Millimetre Wave and Terahertz Sensors and Technology Iii 7837. doi:10.1117/12.864873

  24. Trzcinski T, Palka N, Szustakowski M (2011) THz spectroscopy of explosive-related simulants and oxidizers. Bull Polish Acad Sci Techn Sci 59(4):445–447. doi:10.2478/v10175-011-0056-4

    CAS  Google Scholar 

  25. Walczakowski M, Palka N, Szustakowski M, Czerwinski A, Sypek M (2013) Detection of the THz waves from the 5-m distance. Millimetre Wave and Terahertz Sensors and Technology Vi 8900. doi:10.1117/12.2028852

  26. Maestrojuan I, Palacios I, Etayo D, Iriarte JC, Teniente J, Ederra I, Gonzalo R (2011) Explosives Characterization in Terahertz Range. Millimetre Wave and Terahertz Sensors and Technology Iv 8188. doi:10.1117/12.898152

  27. Etayo D, Maestrojuan I, Teniente J, Ederra I, Gonzalo R (2013) Experimental explosive characterization for counterterrorist investigation. J Infrared Millimeter Terahertz Waves 34(7–8):468–479. doi:10.1007/s10762-013-9988-0

    Article  CAS  Google Scholar 

  28. Sleiman JB, El Haddad J, Perraud JB, Bassel L, Bousquet B, Palka N, Mounaix P (2014) Qualitative and quantitative analysis of explosives by terahertz time-domain spectroscopy: Application to imaging. 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves. doi:10.1109/IRMMW-THz.2014.6956226

  29. Barber J, Weatherall JC, Smith BT, Duffy S, Goettler SJ, Krauss RA (2010) Millimeter wave measurements of explosives and simulants. Proc of SPIE Passive Millimeter-Wave Imaging Technology XIII 7670:76700E-76700E-76707

  30. van Rheenen AD, Haakestad MW (2011) Detection and identification of explosives hidden under barrier materials - what are the THz-technology challenges? Detection and Sensing of Mines, Explosive Objects, and Obscured Targets Xvi 8017. doi:10.1117/12.886108

  31. Trofimov VA, Varentsova SA, Szustakowski M, Palka N (2012) Efficiency of the detection and identification of ceramic explosive using the reflected THz signal. Terahertz Physics, Devices, and Systems Vi: Advanced Applications in Industry and Defense 8363. doi:10.1117/12.919750

  32. Choi J, Ryu SY, Kwon WS, Kim K-S, Kim S (2013) Compound explosives detection and component analysis via terahertz time-domain spectroscopy. J Opt Soc Korea 17(5):454–460. doi:10.3807/josk.2013.17.5.454

    Article  Google Scholar 

  33. Gavenda T, Kresalek V (2013) Terahertz time-domain spectroscopy for distinguishing different kinds of gunpowder. Millimetre Wave and Terahertz Sensors and Technology Vi 8900. doi:10.1117/12.2034126

  34. Witko EM, Buchanan WD, Korter TM (2011) Terahertz spectroscopy and solid-state density functional theory simulations of the improvised explosive oxidizers potassium nitrate and ammonium nitrate. J Phys Chem A 115(44):12410–12418. doi:10.1021/jp2075429

    Article  CAS  Google Scholar 

  35. Khachatrian A, Melinger JS, Qadri SB (2012) Waveguide terahertz time-domain spectroscopy of ammonium nitrate polycrystalline films. Journal of Applied Physics 111 (9):-. doi:doi:http://dx.doi.org/10.1063/1.4709385

  36. Witko EM, Korter TM (2012) Terahertz spectroscopy of the explosive taggant 2,3-dimethyl-2,3-dinitrobutane. J Phys Chem A 116(25):6879–6884. doi:10.1021/jp302487t

    Article  CAS  Google Scholar 

  37. Kemp MC (2011) Explosives detection by terahertz spectroscopy-a bridge Too Far? Ieee Trans Terahertz Sci Technol 1(1):282–292. doi:10.1109/tthz.2011.2159647

    Article  CAS  Google Scholar 

  38. Palka N (2013) Identification of concealed materials, including explosives, by terahertz reflection spectroscopy. Opt Eng 53(3):031202–031202. doi:10.1117/1.OE.53.3.031202

    Article  CAS  Google Scholar 

  39. Palka N (2013) Detection of covered materials in the TDS-THz setup. Terahertz Physics, Devices, and Systems Vii: Advanced Applications in Industry and Defense 8716. doi:10.1117/12.2015373

  40. Trofimov VA, Peskov NV, Kirillov DA (2012) Efficiency of using correlation function for estimation of probability of substance detection on the base of THz spectral dynamics. Terahertz Emitters, Receivers, and Applications Iii 8496. doi:10.1117/12.927441

  41. Trofimov VA, Trofimov VV, Deng C, Zhao Y-m, Zhang C-l, Zhang X (2011) Possible way for increasing the quality of imaging from THz passive device. Optics and Photonics for Counterterrorism and Crime Fighting Vii Optical Materials in Defence Systems Technology Viii and Quantum-Physics-Based Information Security 8189. doi:10.1117/12.897900

  42. Trofimov VA, Trofimov VV, Kuchik IE (2014) Temperature resolution enhancing of commercially available THz passive cameras due to computer processing of images. Passive and Active Millimeter-Wave Imaging Xvii 9078. doi:10.1117/12.2049413

  43. Zhao R, Zhao Y-m, Deng C, Zhang C-l, Li Y (2014) Target Recognition in Passive Terahertz Image of Human Body. Infrared, Millimeter-Wave, and Terahertz Technologies Iii 9275. doi:10.1117/12.2073957

  44. Henry SC, Schecklman S, Kniffin GP, Zurk LM, Chen A (2010) Measurement and Modeling of Rough Surface Effects on Terahertz Spectroscopy. Terahertz Technology and Applications Iii 7601. doi:10.1117/12.841054

  45. Zurk LM, Henry SC, Schecklman S, Duncan DD (2010) Physics-based processing for terahertz reflection spectroscopy and imaging. Infrared, Millimeter Wave, and Terahertz Technologies 7854. doi:10.1117/12.870664

  46. Schecklman S, Zurk LM, Henry S, Kniffin GP (2011) Terahertz material detection from diffuse surface scattering. Journal of Applied Physics 109 (9). doi:10.1063/1.3561806

  47. Henry SC, Kniffin GP, Zurk LM (2012) 3-D broadband terahertz synthetic aperture imaging. 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves. doi:10.1109/IRMMW-THz.2012.6380366

  48. Henry SC, Zurk LM, Schecklman S (2013) Terahertz spectral imaging using correlation processing. Ieee Trans Terahertz Sci Technol 3(4):486–493. doi:10.1109/tthz.2013.2261065

    Article  CAS  Google Scholar 

  49. Startsev MA, Elezzabi AY (2013) Terahertz frequency continuous-wave spectroscopy and imaging of explosive substances. ISRN Optics 2013:8. doi:10.1155/2013/419507

    Article  CAS  Google Scholar 

  50. Palka N, Szustakowski M, Kowalski M, Trzcinski T, Ryniec R, Piszczek M, Ciurapinski W, Zyczkowski M, Zagrajek P, Wrobel J (2012) THz spectroscopy and imaging in security applications. 2012 19th International Conference on Microwaves, Radar & Wireless Communications. doi:10.1109/mikon.2012.6233513

  51. Carriere JTA, Havermeyer F, Heyler RA (2013) THz-Raman Spectroscopy for Explosives, Chemical and Biological Detection. Chemical, Biological, Radiological, Nuclear, and Explosives (Cbrne) Sensing Xiv 8710. doi:10.1117/12.2018095

  52. Heyler RA, Carriere JTA, Havermeyer F (2013) THz-Raman - Accessing molecular structure with Raman spectroscopy for enhanced chemical identification, analysis and monitoring. Next-Generation Spectroscopic Technologies Vi 8726. doi:10.1117/12.2018136

  53. Carriere JTA, Havermeyer F, Heyler RA (2014) Improving Sensitivity and Source Attribution of Homemade Explosives with Low Frequency/THz-Raman (R) Spectroscopy. Chemical, Biological, Radiological, Nuclear, and Explosives (Cbrne) Sensing Xv 9073. doi:10.1117/12.2053461

  54. Lu W, Argyros A (2014) Terahertz spectroscopy and imaging with flexible tube-lattice fiber probe. J Lightwave Technol 32(23):4019–4025. doi:10.1109/jlt.2014.2361145

    Google Scholar 

  55. Perov AN, Zaytsev KI, Fokina IN, Karasik VE, Yakovlev EV, Yurchenko SO, Iop (2014) BWO based THz imaging system. 2nd Russia-Japan-USA Symposium on the Fundamental and Applied Problems of Terahertz Devices and Technologies (Rjus Teratech - 2013) 486. doi:10.1088/1742-6596/486/1/012027

  56. Simoens F, Arnaud A, Castelein P, Goudon V, Imperinetti P, Dera JL, Meilhan J, Buffet JLO, Pocas S, Maillou T, Hairault L, Gellie P, Barbieri S, Sirtori C (2010) Development of uncooled antenna-coupled microbolometer arrays for explosive detection and identification. Millimetre Wave and Terahertz Sensors and Technology Iii 7837. doi:10.1117/12.865189

  57. Simoens F, Meilhan J, Delplanque B, Gidon S, Lasfargues G, Dera JL, Nguyen DT, Ouvrier-Buffet JL, Pocas S, Maillou T, Cathabard O, Barbieri S (2012) Real-time imaging with THz fully-customized uncooled amorphous-silicon microbolometer focal plane arrays. Terahertz Physics, Devices, and Systems Vi: Advanced Applications in Industry and Defense 8363. doi:10.1117/12.919185

  58. Bolduc M, Terroux M, Tremblay B, Marchese L, Savard E, Doucet M, Oulachgar H, Alain C, Jerominek H, Bergeron A (2011) Noise-equivalent power characterization of an uncooled microbolometer-based THz imaging camera. Terahertz Physics, Devices, and Systems V: Advance Applications in Industry and Defense 8023. doi:10.1117/12.883507

  59. Castro-Suarez JR, Pacheco-Londono LC, Ortiz-Rivera W, Velez-Reyes M, Diem M, Hernandez-Rivera SP (2011) Open Path FTIR Detection of Threat Chemicals in Air and on Surfaces. Infrared Technology and Applications Xxxvii 8012. doi:10.1117/12.884436

  60. Bingham AL, Lucey PG, Akagi JT, Hinrichs JL, Knobbe ET (2014) LWIR hyperspectral micro-imager for detection of trace explosive particles. Next-Generation Spectroscopic Technologies Vii 9101. doi:10.1117/12.2050824

  61. Theriault J-M, Montembeault Y, Lavoie H, Bouffard F, Fortin G, Lacasse P, Vallieres A, Puckrin E, Farley V, Chamberland D, Bubner T (2011) A novel infrared hyperspectral imager for passive standoff detection of explosives and explosive precursors. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XII 8018. doi:10.1117/12.884327

  62. Wagner J, Ostendorf R, Grahmann J, Merten A, Hugger S, Jarvis JP, Fuchs F, Boskovic D, Schenk H (2015) Widely tuneable quantum cascade lasers for spectroscopic sensing. Quantum Sensing and Nanophotonic Devices Xii 9370. doi:10.1117/12.2082794

  63. Price SR, Anderson DT, Luke RH, Stone K, Keller JM (2013) Automatic detection system for buried explosive hazards in FL-LWIR based on soft feature extraction using a bank of Gabor energy filters. Detection and Sensing of Mines, Explosive Objects, and Obscured Targets Xviii 8709. doi:10.1117/12.2014781

  64. Pacheco-Londono LC, Castro-Suarez JR, Aparicio-Bolanos J, Hernandez-Rivera SP (2013) Angular Dependence of Source-Target-Detector in Active Mode Standoff Infrared Detection. Sensors, and Command, Control, Communications, and Intelligence (C3i) Technologies for Homeland Security and Homeland Defense Xii 8711. doi:10.1117/12.2016153

  65. Zhang Z, Clewes RJ, Howle CR, Reid DT (2014) Active FTIR-based stand-off spectroscopy using a femtosecond optical parametric oscillator. Opt Lett 39(20):6005–6008. doi:10.1364/ol.39.006005

    Article  CAS  Google Scholar 

  66. Mukherjee A, Von der Porten S, Patel CKN (2010) Standoff detection of explosive substances at distances of up to 150 m. Appl Opt 49(11):2072–2078. doi:10.1364/ao.49.002072

    Article  CAS  Google Scholar 

  67. Fuchs F, Hugger S, Jarvis J, Blattmann V, Kinzer M, Yang QK, Ostendorf R, Bronner W, Driad R, Aidam R, Wagner J (2013) Infrared Hyperspectral Standoff Detection of Explosives. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIV 8710. doi:10.1117/12.2015682

  68. Fuchs F, Hugger S, Kinzer M, Yang QK, Bronner W, Aidam R, Degreif K, Rademacher S, Schnuerer F, Schweikert W (2012) Standoff detection of explosives with broad band tunable external cavity quantum cascade lasers. Quantum Sensing and Nanophotonic Devices Ix 8268. doi:10.1117/12.908119

  69. Bernacki BE, Phillips MC (2010) Standoff hyperspectral imaging of explosives residues using broadly tunable external cavity quantum cascade laser illumination. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing Xi 7665. doi:10.1117/12.849543

  70. Degreif K, Rademacher S, Dasheva P, Fuchs F, Hugger S, Schnuerer F, Schweikert W (2011) Stand-off explosive detection on surfaces using multispectral MIR-Imaging. Quantum Sensing and Nanophotonic Devices Viii 7945. doi:10.1117/12.874044

  71. Suter JD, Bernacki B, Phillips MC (2012) Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers. Appl Phys B-Lasers Optics 108(4):965–974. doi:10.1007/s00340-012-5134-2

    Article  CAS  Google Scholar 

  72. Macleod NA, Molero F, Weidmann D (2015) Broadband standoff detection of large molecules by mid-infrared active coherent laser spectrometry. Opt Express 23(2):912–928. doi:10.1364/oe.23.000912

    Article  Google Scholar 

  73. Boyson TK, Rittman DR, Spence TG, Calzada ME, Kallapur AG, Petersen IR, Kirkbride KP, Moore DS, Harb CC (2014) Pulsed quantum cascade laser based hypertemporal real-time headspace measurements. Opt Express 22(9):10519–10534. doi:10.1364/oe.22.010519

    Article  CAS  Google Scholar 

  74. Patel CKN (2011) Quantum Cascade Lasers: A Game Changer for Defense and Homeland Security IR Photonics. Micro- and Nanotechnology Sensors, Systems, and Applications Iii 8031. doi:10.1117/12.885806

  75. Furstenberg R, Kendziora C, Papantonakis M, Viet N, McGill RA (2014) The challenge of changing signatures in infrared stand-off detection of trace explosives. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XV 9073. doi:10.1117/12.2050621

  76. Deutsch ER, Haibach FG, Mazurenko A (2012) Detection and Quantification of Explosives and CWAs using a Handheld Widely-Tunable Quantum Cascade Laser. Next-Generation Spectroscopic Technologies V 8374. doi:10.1117/12.919554

  77. Fernandez A, de la Ossa M, Amigo JM, Garcia-Ruiz C (2014) Detection of residues from explosive manipulation by near infrared hyperspectral imaging: A promising forensic tool. Forensic Sci Int 242:228–235. doi:10.1016/j.forsciint.2014.06.023

    Article  CAS  Google Scholar 

  78. Fernandez de la Ossa MA, Garcia-Ruiz C, Amigo JM (2014) Near infrared spectral imaging for the analysis of dynamite residues on human handprints. Talanta 130:315–321. doi:10.1016/j.talanta.2014.07.026

    Article  CAS  Google Scholar 

  79. Gomer NR, Gardner CW (2014) STARR: shortwave-targeted agile Raman robot for the detection and identification of emplaced explosives. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XV 9073. doi:10.1117/12.2050647

  80. Kumar M, Islam MN, Terry FL Jr, Freeman MJ, Chan A, Neelakandan M, Manzur T (2012) Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source. Appl Opt 51(15):2794–2807. doi:10.1364/ao.51.002794

    Article  CAS  Google Scholar 

  81. Dubroca T, Guetard G, Hummel RE (2012) Influence of spatial differential reflection parameters on 2,4,6-trinitrotoluene (TNT) absorption spectra. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIII 8358. doi:10.1117/12.918385

  82. Dubroca T, Moyant K, Hummel RE (2013) Ultra-violet and visible absorption characterization of explosives by differential reflectometry. Spectrochim Acta Part A Mol Biomol Spectrosc 105:149–155. doi:10.1016/j.saa.2012.11.090

    Article  CAS  Google Scholar 

  83. Dubroca T, Brown G, Hummel RE (2014) Detection of explosives by differential hyperspectral imaging. Optical Engineering 53 (2). doi:10.1117/1.oe.53.2.021112

  84. Buryakov IA, Buryakov TI, Matsaev VT (2014) Optical chemical sensors for the detection of explosives and associated substances. J Anal Chem 69(7):616–631. doi:10.1134/s1061934814070041

    Article  CAS  Google Scholar 

  85. Hu Z, Deibert BJ, Li J (2014) Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem Soc Rev 43(16):5815–5840. doi:10.1039/C4CS00010B

    Article  CAS  Google Scholar 

  86. Xu H, Liu F, Cui Y, Chen B, Qian G (2011) A luminescent nanoscale metal-organic framework for sensing of nitroaromatic explosives. Chem Commun 47(11):3153–3155. doi:10.1039/C0CC05166G

    Article  CAS  Google Scholar 

  87. Wu Z-F, Tan B, Feng M-L, Lan A-J, Huang X-Y (2014) A magnesium MOF as a sensitive fluorescence sensor for CS2 and nitroaromatic compounds. J Mater Chem A 2(18):6426–6431. doi:10.1039/C3TA15071B

    Article  CAS  Google Scholar 

  88. Ma J, Lv L, Zou G, Zhang Q (2015) Fluorescent porous film modified polymer optical fiber via “click” chemistry: stable Dye dispersion and trace explosive detection. ACS Appl Mater Interfaces 7(1):241–249. doi:10.1021/am505950c

    Article  CAS  Google Scholar 

  89. Sun X, Bruckner C, Nieh M-P, Lei Y (2014) A fluorescent polymer film with self-assembled three-dimensionally ordered nanopores: preparation, characterization and its application for explosives detection. J Mater Chem A 2(35):14613–14621. doi:10.1039/C4TA02554G

    Article  CAS  Google Scholar 

  90. Ma H, Gao R, Yan D, Zhao J, Wei M (2013) Organic-inorganic hybrid fluorescent ultrathin films and their sensor application for nitroaromatic explosives. J Mater Chem C 1(26):4128–4137. doi:10.1039/C3TC30142G

    Article  CAS  Google Scholar 

  91. Li H, Wang J, Pan Z, Cui L, Xu L, Wang R, Song Y, Jiang L (2011) Amplifying fluorescence sensing based on inverse opal photonic crystal toward trace TNT detection. J Mater Chem 21(6):1730–1735. doi:10.1039/c0jm02554b

    Article  CAS  Google Scholar 

  92. Li X, Zhang Z, Tao L (2013) A novel array of chemiluminescence sensors for sensitive, rapid and high-throughput detection of explosive triacetone triperoxide at the scene. Biosens Bioelectron 47:356–360. doi:10.1016/j.bios.2013.03.002

    Article  CAS  Google Scholar 

  93. Shaw A, Calhoun RL (2012) Electrogenerated Chemiluminescence with Ruthenium Trisbipyridine and TATP. In: Mantz RA, Suroviec A (eds) Physical and Analytical Electrochemistry, vol 41. ECS Transactions, vol 27. pp 49–56. doi:10.1149/1.3692523

  94. Shaw A, Lindhome P, Calhoun RL (2013) Electrogenerated Chemiluminescence (ECL) Quenching of Ru(bpy)(3)(2+) by the Explosives TATP and Tetryl. J Electrochem Soc 160(10):H782–H786. doi:10.1149/2.005311jes

    Article  CAS  Google Scholar 

  95. Parajuli S, Miao W (2013) Sensitive Determination of Triacetone Triperoxide Explosives Using Electrogenerated Chemiluminescence. Anal Chem 85(16):8008–8015. doi:10.1021/ac401962b

    Article  CAS  Google Scholar 

  96. Donaldson DN, Barnett NW, Agg KM, Graham D, Lenehan CE, Prior C, Lim KF, Francis PS (2012) Chemiluminescence detection of 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and related nitramine explosives. Talanta 88:743–748. doi:10.1016/j.talanta.2011.11.051

    Article  CAS  Google Scholar 

  97. Ni X, Zhao Y, Song Q (2015) Electrochemical reduction and in-situ electrochemiluminescence detection of nitroaromatic compounds. Electrochim Acta 164:31–37. doi:10.1016/j.electacta.2015.02.174

    Article  CAS  Google Scholar 

  98. Qi W, Xu M, Pang L, Liu Z, Zhang W, Majeed S, Xu G (2014) Electrochemiluminescence Detection of TNT by Resonance Energy Transfer through the Formation of a TNT-Amine Complex. Chem-A Eur J 20(16):4829–4835. doi:10.1002/chem.201303710

    Article  CAS  Google Scholar 

  99. Ma Y, Wang L (2014) Upconversion luminescence nanosensor for TNT selective and label-free quantification in the mixture of nitroaromatic explosives. Talanta 120:100–105. doi:10.1016/j.talanta.2013.12.009

    Article  CAS  Google Scholar 

  100. Tu N, Wang L (2013) Surface plasmon resonance enhanced upconversion luminescence in aqueous media for TNT selective detection. ChemCommun 49(56):6319–6321. doi:10.1039/C3CC43146K

    CAS  Google Scholar 

  101. Fountain AW, Christesen SD, Moon RP, Guicheteau JA, Emmons ED (2014) Recent Advances and Remaining Challenges for the Spectroscopic Detection of Explosive Threats. Appl Spectrosc 68(8):795–811. doi:10.1366/14-07560

    Article  CAS  Google Scholar 

  102. Fountain AW, III, Guicheteau JA, Pearman WF, Chyba TH, Christesen SD (2010) Long Range Standoff Detection of Chemical, Biological and Explosive Hazards on Surfaces. Micro- and Nanotechnology Sensors, Systems, and Applications Ii 7679. doi:10.1117/12.851785

  103. Lopez-Lopez M, Garcia-Ruiz C (2014) Infrared and Raman spectroscopy techniques applied to identification of explosives. Trac-Trends Anal Chem 54:36–44. doi:10.1016/j.trac.2013.10.011

    Article  CAS  Google Scholar 

  104. Forest R, Babin F, Gay D, Ho N, Pancrati O, Deblois S, Desilets S, Maheux J (2012) Use of a spectroscopic lidar for standoff explosives detection through Raman spectra. In: Fountain AW (ed) Chemical, Biological, Radiological, Nuclear, and Explosives, vol 8358. Proceedings of SPIE. doi:10.1117/12.918672

  105. Ehlerding A, Johansson I, Wallin S, Ostmark H (2012) Resonance-enhanced Raman Spectroscopy on Explosives Vapor at Standoff Distances. International Journal of Spectroscopy:158715 (158719 pp.)-158715 (158719 pp.). doi:10.1155/2012/158715

  106. Ghosh M, Wang L, Asher SA (2012) Deep-Ultraviolet Resonance Raman Excitation Profiles of NH4NO3, PETN, TNT, HMX, and RDX. Appl Spectrosc 66(9):1013–1021. doi:10.1366/12-06626

    Article  CAS  Google Scholar 

  107. Hug WF, Bhartia R, Sijapati K, Beegle LW, Reid RD (2014) Improved sensing using simultaneous deep-UV Raman and fluorescence detection - II. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XV 9073. doi:10.1117/12.2053069

  108. Tuschel DD, Mikhonin AV, Lemoff BE, Asher SA (2010) Deep Ultraviolet Resonance Raman Excitation Enables Explosives Detection. Appl Spectrosc 64(4):425–432

    Article  CAS  Google Scholar 

  109. Yellampalle B, Lemoff BE (2013) Raman Albedo and Deep-UV Resonance Raman Signatures of Explosives. Active and Passive Signatures Iv 8734. doi:10.1117/12.2015951

  110. Almaviva S, Angelini F, Chirico R, Palucci A, Nuvoli M, Schnuerer F, Schweikert W, Romolo FS (2014) Eye-safe UV Raman spectroscopy for remote detection of explosives and their precursors in fingerprint concentration. Optics and Photonics for Counterterrorism, Crime Fighting, and Defence X; and Optical Materials and Biomaterials in Security and Defence Systems Technology XI 9253. doi:10.1117/12.2067292

  111. Chirico R, Almaviva S, Colao F, Fiorani L, Nuvoli M, Schweiket W, Schnuerer F, Cassioli L, Grossi S, Mariani L, Angelini F, Menicucci I, Palucci A (2014) Proximal detection of energetic materials on fabrics by UV-Raman spectroscopy. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XV 9073. doi:10.1117/12.2045572

  112. Glimtoft M, Baath P, Saari H, Makynen J, Nasila A, Ostmark H (2014) Towards eye-safe standoff Raman imaging systems. Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIX 9072. doi:10.1117/12.2049676

  113. Akeson M, Nordberg M, Ehlerding A, Nilsson L-E, Ostmark H, Strombeck P (2011) Picosecond laser pulses improves sensitivity in standoff explosive detection. Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVI 8017. doi:10.1117/12.883351

  114. Shreve AP, Cherepy NJ, Mathies RA (1992) Effective rejection of fluorescence interference in Raman spectrosocpy using a shifted excitation difference technique. Appl Spectrosc 46(4):707–711

    Article  CAS  Google Scholar 

  115. Yellampalle B, McCormick W, Wu H-S, Sluch M, Martin R, Ice R, Lemoff BE (2014) High-sensitivity explosives detection using dual-excitation-wavelength resonance-Raman detector. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XV 9073. doi:10.1117/12.2050441

  116. Yellampalle B, Sluch M, Asher S, Lemoff B (2011) Multiple-Excitation-Wavelength Resonance-Raman Explosives Detection. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XII 8018. doi:10.1117/12.887087

  117. Yellampalle B, Sluch M, Wu H-S, Martin R, McCormick W, Ice R, Lemoff BE (2013) Dual-Excitation-Wavelength Resonance-Raman Explosives Detector. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIV 8710. doi:10.1117/12.2015945

  118. Moros J, Antonio Lorenzo J, Lucena P, Miguel Tobaria L, Javier Laserna J (2010) Simultaneous Raman Spectroscopy-Laser-induced Breakdown Spectroscopy for Instant Standoff Analysis of Explosives Using a Mobile Integrated Sensor Platform. Anal Chem 82(4):1389–1400. doi:10.1021/ac902470v

    Article  CAS  Google Scholar 

  119. Moros J, Javier Laserna J (2015) Unveiling the identity of distant targets through advanced Raman-laser-induced breakdown spectroscopy data fusion strategies. Talanta 134:627–639. doi:10.1016/j.talanta.2014.12.001

    Article  CAS  Google Scholar 

  120. Desilets S, Ho N, Mathieu P, Simard JR, Puckrin E, Theriault JM, Lavoie H, Theberge F, Babin F, Gay D, Forest R, Maheux J, Roy G, Chateauneuf M (2011) Standoff detection of explosives, a challenging approach for optical technologies. Micro- and Nanotechnology Sensors, Systems, and Applications III 8031. doi:10.1117/12.885616

  121. Misra AK, Sharma SK, Acosta TE, Porter JN, Lucey PG, Bates DE (2012) Portable standoff Raman system for fast detection of homemade explosives through glass, plastic and water. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIII 8358. doi:10.1117/12.919647

  122. Misra AK, Sharma SK, Acosta TE, Porter JN, Bates DE (2012) Single-Pulse Standoff Raman Detection of Chemicals from 120 m Distance During Daytime. Appl Spectrosc 66(11):1279–1285. doi:10.1366/12-06617

    Article  CAS  Google Scholar 

  123. Ortiz-Rivera W, Pacheco-Londono LC, Castro-Suarez JR, Felix-Rivera H, Hernandez-Rivera SP (2011) Vibrational Spectroscopy Standoff Detection of Threat Chemicals. Micro- and Nanotechnology Sensors, Systems, and Applications Iii 8031. doi:10.1117/12.884433

  124. Pettersson A, Wallin S, Ostmark H, Ehlerding A, Johansson I, Nordberg M, Ellis H, Al-Khalili A (2010) EXPLOSIVES STANDOFF DETECTION USING RAMAN SPECTROSCOPY: FROM BULK TOWARDS TRACE DETECTION. Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XV 7664. doi:10.1117/12.852544

  125. Wallin S, Pettersson A, Onnerud H, Ostmark H, Nordberg M, Ceco E, Ehlerding A, Johansson I, Kack P (2012) Possibilities for Standoff Raman Detection Applications for Explosives. In: Fountain AW (ed) Chemical, Biological, Radiological, Nuclear, and Explosives, vol 8358. Proceedings of SPIE. doi:10.1117/12.919144

  126. Zachhuber B, Ostmark H, Carlsson T (2014) Spatially offset hyperspectral stand-off Raman imaging for explosive detection inside containers. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XV 9073. doi:10.1117/12.2053251

  127. Almeida MR, Correa DN, Zacca JJ, Lima Logrado LP, Poppi RJ (2015) Detection of explosives on the surface of banknotes by Raman hyperspectral imaging and independent component analysis. Anal Chim Acta 860:15–22. doi:10.1016/j.aca.2014.12.034

    Article  CAS  Google Scholar 

  128. Izake EL, Sundarajoo S, Olds W, Cletus B, Jaatinen E, Fredericks PM (2013) Standoff Raman spectrometry for the non-invasive detection of explosives precursors in highly fluorescing packaging. Talanta 103:20–27. doi:10.1016/j.talanta.2012.09.055

    Article  CAS  Google Scholar 

  129. Petterson IEI, Lopez-Lopez M, Garcia-Ruiz C, Gooijer C, Buijs JB, Ariese F (2011) Noninvasive Detection of Concealed Explosives: Depth Profiling through Opaque Plastics by Time-Resolved Raman Spectroscopy. Anal Chem 83(22):8517–8523. doi:10.1021/ac2018102

    Article  CAS  Google Scholar 

  130. Dogariu A (2013) Standoff detection and imaging of explosives using CARS. 2013 Conference on Lasers and Electro-Optics

  131. Portnov A, Bar I, Rosenwaks S (2010) Highly sensitive standoff detection of explosives via backward coherent anti-Stokes Raman scattering. Appl Phys B-Lasers Optics 98(2–3):529–535. doi:10.1007/s00340-009-3709-3

    Article  CAS  Google Scholar 

  132. Bremer MT, Wrzesinski PJ, Butcher N, Lozovoy VV, Dantus M (2011) Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering. Applied Physics Letters 99 (10). doi:10.1063/1.3636436

  133. Moore DS, McGrane SD, Greenfield MT, Scharff RJ (2012) Optimal coherent control methods for explosives detection. Micro- and Nanotechnology Sensors, Systems, and Applications Iv 8373. doi:10.1117/12.920944

  134. Moore DS, McGrane SD, Greenfield MT, Scharff RJ, Chalmers RE (2012) Use of the Gerchberg-Saxton algorithm in optimal coherent anti-Stokes Raman spectroscopy. Anal Bioanal Chem 402(1):423–428. doi:10.1007/s00216-011-5348-x

    Article  CAS  Google Scholar 

  135. Moore DS, Rabitz H, McGrane SD, Greenfield MT, Scharff RJ, Chalmers RE, Roslund J (2011) Optimal Dynamic Detection of Explosives. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XII 8018. doi:10.1117/12.882963

  136. Bremer MT, Dantus M (2013) Standoff explosives trace detection and imaging by selective stimulated Raman scattering. Applied Physics Letters 103 (6). doi:10.1063/1.4817248

  137. Dogariu A, Michael JB, Scully MO, Miles RB (2011) High-Gain Backward Lasing in Air. Science 331(6016):442–445. doi:10.1126/science.1199492

    Article  CAS  Google Scholar 

  138. Li D-W, Zhai W-L, Li Y-T, Long Y-T (2014) Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchim Acta 181(1–2):23–43. doi:10.1007/s00604-013-1115-3

    Article  CAS  Google Scholar 

  139. Upadhyayula VKK (2012) Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: A review. Anal Chim Acta 715:1–18. doi:10.1016/j.aca.2011.12.008

    Article  CAS  Google Scholar 

  140. Baker GA, Moore DS (2005) Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Anal Bioanal Chem 382(8):1751–1770. doi:10.1007/s00216-005-3353-7

    Article  CAS  Google Scholar 

  141. Hamad S, Podagatlapalli GK, Mohiddon MA, Rao SV (2015) Surface enhanced fluorescence from corroles and SERS studies of explosives using copper nanostructures. Chem Phys Lett 621:171–176. doi:10.1016/j.cplett.2015.01.006

    Article  CAS  Google Scholar 

  142. Podagatlapalli GK, Hamad S, Mohiddon MA, Rao SV (2014) Effect of oblique incidence on silver nanomaterials fabricated in water via ultrafast laser ablation for photonics and explosives detection. Appl Surf Sci 303:217–232. doi:10.1016/j.apsusc.2014.02.152

    Article  CAS  Google Scholar 

  143. Jamil AKM, Izake EL, Sivanesan A, Fredericks PM (2015) Rapid detection of TNT in aqueous media by selective label free surface enhanced Raman spectroscopy. Talanta 134:732–738. doi:10.1016/j.talanta.2014.12.022

    Article  CAS  Google Scholar 

  144. Almaviva S, Botti S, Cantarini L, Fantoni R, Lecci S, Palucci A, Puiu A, Rufoloni A (2014) Ultrasensitive RDX detection with commercial SERS substrates. J Raman Spectrosc 45(1):41–46. doi:10.1002/jrs.4413

    Article  CAS  Google Scholar 

  145. Almaviva S, Botti S, Cantarini L, Palucci A, Puiu A, Rufoloni A, Landstrom L, Romolo FS (2012) Trace detection of explosives by Surface Enhanced Raman Spectroscopy. Optics and Photonics for Counterterrorism, Crime Fighting, and Defence Viii 8546. doi:10.1117/12.970300

  146. Botti S, Cantarini L, Almaviva S, Puiu A, Rufoloni A (2014) Assessment of SERS activity and enhancement factors for highly sensitive gold coated substrates probed with explosive molecules. Chem Phys Lett 592:277–281. doi:10.1016/j.cplett.2013.12.063

    Article  CAS  Google Scholar 

  147. Botti S, Cantarini L, Palucci A (2010) Surface-enhanced Raman spectroscopy for trace-level detection of explosives. J Raman Spectrosc 41(8):866–869. doi:10.1002/jrs.2649

    Article  CAS  Google Scholar 

  148. Buettner F, Hagemann J, Wellhausen M, Funke S, Lenth C, Rotter F, Gundrum L, Plachetka U, Moormann C, Strube M, Walte A, Wackerbarth H (2013) Surface Enhanced Vibrational Spectroscopy for the Detection of Explosives. Electro-Optical and Infrared Systems: Technology and Applications X 8896. doi:10.1117/12.2028736

  149. Holthoff EL, Stratis-Cullum DN, Hankus ME (2011) A Nanosensor for TNT Detection Based on Molecularly Imprinted Polymers and Surface Enhanced Raman Scattering. Sensors 11(3):2700–2714. doi:10.3390/s110302700

    Article  CAS  Google Scholar 

  150. Raza A, Saha B (2014) In situ silver nanoparticles synthesis in agarose film supported on filter paper and its application as highly efficient SERS test stripes. Forensic Sci Int 237:E42–E46. doi:10.1016/j.forsciint.2014.01.019

    Article  CAS  Google Scholar 

  151. Hatab NA, Eres G, Hatzinger PB, Gu B (2010) Detection and analysis of cyclotrimethylenetrinitramine (RDX) in environmental samples by surface-enhanced Raman spectroscopy. J Raman Spectrosc 41(10):1131–1136. doi:10.1002/jrs.2574

    Article  CAS  Google Scholar 

  152. Mahmoud KA, Zourob M (2013) Fe3O4/Au nanoparticles/lignin modified microspheres as effectual surface enhanced Raman scattering (SERS) substrates for highly selective and sensitive detection of 2,4,6-trinitrotoluene (TNT). The Analyst 138(9):2712–2719. doi:10.1039/c3an00261f

    Article  CAS  Google Scholar 

  153. Xu Z, Meng X (2012) Detection of 3-nitro-1,2,4-triazol-3-one (NTO) by surface-enhanced Raman spectroscopy. Vib Spectrosc 63:390–395. doi:10.1016/j.vibspec.2012.08.008

    Article  CAS  Google Scholar 

  154. Zhang C, Wang K, Han D, Pang Q (2014) Surface enhanced Raman scattering (SERS) spectra of trinitrotoluene in silver colloids prepared by microwave heating method. Spectrochim Acta Part A (Mol Biomol Spectrosc) 122:387–391. doi:10.1016/j.saa.2013.11.066

    Article  CAS  Google Scholar 

  155. Zachhuber B, Carrillo-Carrion C, Simonet Suau BM, Lendl B (2012) Quantification of DNT isomers by capillary liquid chromatography using at-line SERS detection or multivariate analysis of SERS spectra of DNT isomer mixtures. J Raman Spectrosc 43(8):998–1002. doi:10.1002/jrs.3149

    Article  CAS  Google Scholar 

  156. Talian I, Huebner J (2013) Separation followed by direct SERS detection of explosives on a novel black silicon multifunctional nanostructured surface prepared in a microfluidic channel. J Raman Spectrosc 44(4):536–539. doi:10.1002/jrs.4237

    Article  CAS  Google Scholar 

  157. Spicer JB, Dagdigian P, Osiander R, Miragliotta J, Zhang XC, Kersting R, Crosley D, Hanson R, Jeffries J (2003) Overview: MURI Center on spectroscopic and time domain detection of trace explosives in condensed and vapor phases. In: Harmon RS, Holloway JH, Broach JT (eds) Detection and Remediation Technologies for Mines and Minelike Targets VIII, Pts 1 and 2, vol 5089. Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE). pp 1088–1094. doi:10.1117/12.487531

  158. Wojtas J, Mikolajczyk J, Bielecki Z (2013) Aspects of the Application of Cavity Enhanced Spectroscopy to Nitrogen Oxides Detection. Sensors 13(6):7570–7598. doi:10.3390/s130607570

    Article  CAS  Google Scholar 

  159. Caygill JS, Davis F, Higson SPJ (2012) Current trends in explosive detection techniques. Talanta 88:14–29. doi:10.1016/j.talanta.2011.11.043

    Article  CAS  Google Scholar 

  160. Taha YM, Odame-Ankrah CA, Osthoff HD (2013) Real-time vapor detection of nitroaromatic explosives by catalytic thermal dissociation blue diode laser cavity ring-down spectroscopy. Chem Phys Lett 582:15–20. doi:10.1016/j.cplett.2013.07.040

    Article  CAS  Google Scholar 

  161. Wojtas J, Stacewicz T, Bielecki Z, Rutecka B, Medrzycki R, Mikolajczyk J (2013) Towards optoelectronic detection of explosives. Opto-Electronics Rev 21(2):210–219. doi:10.2478/s11772-013-0082-x

    Article  CAS  Google Scholar 

  162. Snels M, Venezia T, Belfiore L (2010) Detection and identification of TNT, 2,4-DNT and 2,6-DNT by near-infrared cavity ringdown spectroscopy. Chem Phys Lett 489(1–3):134–140. doi:10.1016/j.cplett.2010.02.065

    Article  CAS  Google Scholar 

  163. Vogelsang M, Welsch T, Jones H (2010) A free-flowing soap film combined with cavity ring-down spectroscopy as a detection system for liquid chromatography. J Chromatogr A 1217(19):3316–3320. doi:10.1016/j.chroma.2009.10.053

    Article  CAS  Google Scholar 

  164. Harb CC, Boyson TK, Kallapur AG, Petersen IR, Calzada ME, Spence TG, Kirkbride KP, Moore DS (2012) Pulsed quantum cascade laser-based CRDS substance detection: real-time detection of TNT. Opt Express 20(14):15489–15502. doi:10.1364/oe.20.015489

    Article  CAS  Google Scholar 

  165. Johnson JB, Allen SD, Merten J, Johnson L, Pinkham D, Reeve SW (2014) Standoff Methods for the Detection of Threat Agents: A Review of Several Promising Laser-Based Techniques. J Spectrosc. doi:10.1155/2014/613435

    Google Scholar 

  166. Gottfried JL, De Lucia FC, Munson CA, Miziolek AW (2009) Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects. Anal Bioanal Chem 395(2):283–300. doi:10.1007/s00216-009-2802-0

    Article  CAS  Google Scholar 

  167. Hahn DW, Omenetto N (2012) Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields. Appl Spectrosc 66(4):347–419. doi:10.1366/11-06574

    Article  CAS  Google Scholar 

  168. Skvortsov LA (2012) Laser methods for detecting explosive residues on surfaces of distant objects. Quantum Electron 42(1):1–11. doi:10.1070/QE2012v042n01ABEH014724

    Article  CAS  Google Scholar 

  169. Fortes FJ, Moros J, Lucena P, Cabalin LM, Laserna JJ (2013) Laser-Induced Breakdown Spectroscopy. Anal Chem 85(2):640–669. doi:10.1021/ac303220r

    Article  CAS  Google Scholar 

  170. Leahy-Hoppa MR, Miragliotta J, Osiander R, Burnett J, Dikmelik Y, McEnnis C, Spicer JB (2010) Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy. Sensors 10(5):4342–4372. doi:10.3390/s100504342

    Article  CAS  Google Scholar 

  171. Lazic V, Palucci A, Jovicevic S, Carpanese M (2011) Detection of explosives in traces by laser induced breakdown spectroscopy: Differences from organic interferents and conditions for a correct classification. Spectrochim Acta Part B-Atomic Spectrosc 66(8):644–655. doi:10.1016/j.sab.2011.07.003

    Article  CAS  Google Scholar 

  172. Carter S, Fisher AS, Hinds MW, Lancaster S, Marshall J (2013) Atomic spectrometry update. Review of advances in the analysis of metals, chemicals and materials. J Anal At Spectrom 28(12):1814–1869. doi:10.1039/c3ja90051g

    Article  CAS  Google Scholar 

  173. Lucena P, Gaona I, Moros J, Laserna JJ (2013) Location and detection of explosive-contaminated human fingerprints on distant targets using standoff laser-induced breakdown spectroscopy. Spectrochim Acta Part B-Atomic Spectrosc 85:71–77. doi:10.1016/j.sab.2013.04.003

    Article  CAS  Google Scholar 

  174. De Lucia FC, Gottfried JL (2012) Classification of explosive residues on organic substrates using laser induced breakdown spectroscopy. Appl Opt 51(7):B83–B92. doi:10.1364/ao.51.000b83

    Article  Google Scholar 

  175. Gottfried JL (2013) Influence of metal substrates on the detection of explosive residues with laser-induced breakdown spectroscopy. Appl Opt 52(4):B10–B19. doi:10.1364/ao.52.000b10

    Article  CAS  Google Scholar 

  176. Fernandez-Bravo A, Lucena P, Laserna JJ (2012) Selective Sampling and Laser-Induced Breakdown Spectroscopy (LIBS) Analysis of Organic Explosive Residues on Polymer Surfaces. Appl Spectrosc 66(10):1197–1203. doi:10.1366/12-06697

    Article  CAS  Google Scholar 

  177. Handke J, Duschek F, Gruenewald K, Pargmann C (2011) Standoff Detection Applying Laser-Induced Breakdown Spectroscopy at the DLR Laser Test Range. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XII 8018. doi:10.1117/12.886543

  178. Wang QQ, Liu K, Zhao H, Ge CH, Huang ZW (2012) Detection of explosives with laser-induced breakdown spectroscopy. Front Phys 7(6):701–707. doi:10.1007/s11467-012-0272-x

    Article  Google Scholar 

  179. Delgado T, Vadillo JM, Javier Laserna J (2014) Primary and recombined emitting species in laser-induced plasmas of organic explosives in controlled atmospheres. J Anal At Spectrom 29(9):1675–1685. doi:10.1039/c4ja00157e

    Article  CAS  Google Scholar 

  180. Sreedhar S, Rao EN, Kumar GM, Tewari SP, Rao SV (2013) Investigation of molecular and elemental species dynamics in NTO, TNT, and ANTA using femtosecond LIBS technique. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIV 8710. doi:10.1117/12.2015685

  181. Sreedhar S, Rao EN, Kumar GM, Tewari SP, Rao SV (2013) Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy. Spectrochim Acta Part B-Atomic Spectrosc 87:121–129. doi:10.1016/j.sab.2013.05.006

    Article  CAS  Google Scholar 

  182. Freeman JR, Diwakar PK, Harilal SS, Hassanein A (2014) Improvements in discrimination of bulk and trace elements in long-wavelength double pulse LIBS. Spectrochim Acta Part B-Atomic Spectrosc 102:36–41. doi:10.1016/j.sab.2014.10.008

    Article  CAS  Google Scholar 

  183. Yang G, Lin QY, Ding Y, Tian D, Duan YX (2015) Laser Induced Breakdown Spectroscopy Based on Single Beam Splitting and Geometric Configuration for Effective Signal Enhancement. Scientific Reports 5. doi:10.1038/srep07625

  184. Huang H, Yang L-M, Liu J (2012) Femtosecond fiber-laser-based laser-induced breakdown spectroscopy. In: Fountain AW (ed) Chemical, Biological, Radiological, Nuclear, and Explosives, vol 8358. Proceedings of SPIE. doi:835817 10.1117/12.918615

  185. Ahmido T, Ting A, Misra P (2013) Femtosecond laser-induced breakdown spectroscopy of surface nitrate chemicals. Appl Opt 52(13):3048–3057. doi:10.1364/ao.52.003048

    Article  CAS  Google Scholar 

  186. Bauer AJR, Farrington MP, Sorauf K, Miziolek AW (2014) Laser-induced Breakdown Spectroscopy and Spectral Analysis of Improvised Explosive Materials. Next-Generation Spectroscopic Technologies Vii 9101. doi:10.1117/12.2057930

  187. Yang CSC, Brown EE, Hommerich U, Jin F, Trivedi SB, Samuels AC, Snyder AP (2012) Long-Wave, Infrared Laser-Induced Breakdown (LIBS) Spectroscopy Emissions from Energetic Materials. Appl Spectrosc 66(12):1397–1402. doi:10.1366/12-06700

    Article  CAS  Google Scholar 

  188. Morton KD, Jr., Torrione PA, Collins L (2011) Signal Processing for the Detection of Explosive Residues on Varying Substrates using Laser Induced Breakdown Spectroscopy. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XII 8018. doi:10.1117/12.885111

  189. Moros J, Serrano J, Sanchez C, Macias J, Laserna JJ (2012) New chemometrics in laser-induced breakdown spectroscopy for recognizing explosive residues. J Anal At Spectrom 27(12):2111–2122. doi:10.1039/c2ja30230f

    Article  CAS  Google Scholar 

  190. El Haddad J, Canioni L, Bousquet B (2014) Good practices in LIBS analysis: Review and advices. Spectrochim Acta Part B-Atomic Spectrosc 101:171–182. doi:10.1016/j.sab.2014.08.039

    Article  CAS  Google Scholar 

  191. De Lucia FC, Gottfried JL (2013) Influence of Molecular Structure on the Laser-Induced Plasma Emission of the Explosive RDX and Organic Polymers. J Phys Chem A 117(39):9555–9563. doi:10.1021/jp312236h

    Article  CAS  Google Scholar 

  192. Serrano J, Moros J, Sanchez C, Macias J, Laserna JJ (2014) Advanced recognition of explosives in traces on polymer surfaces using LIBS and supervised learning classifiers. Anal Chim Acta 806:107–116. doi:10.1016/j.aca.2013.11.035

    Article  CAS  Google Scholar 

  193. Matroodi F, Tavassoli SH (2014) Simultaneous Raman and laser-induced breakdown spectroscopy by a single setup. Appl Phys B-Lasers Optics 117(4):1081–1089. doi:10.1007/s00340-014-5929-4

    Article  CAS  Google Scholar 

  194. Moros J, Lorenzo JA, Laserna JJ (2011) Standoff detection of explosives: critical comparison for ensuing options on Raman spectroscopy-LIBS sensor fusion. Anal Bioanal Chem 400(10):3353–3365. doi:10.1007/s00216-011-4999-y

    Article  CAS  Google Scholar 

  195. Moros J, Laserna JJ (2011) New Raman - Laser induced breakdown spectroscopy identity of explosives using parametric data fusion on an integrated sensing platform. Anal Chem 83:6275–6285. doi:10.1021/ac2009433

    Article  CAS  Google Scholar 

  196. Moros J, Serrano J, Gallego FJ, Macias J, Laserna JJ (2013) Recognition of explosives fingerprints on objects for courier services using machine learning methods and laser-induced breakdown spectroscopy. Talanta 110:108–117. doi:10.1016/j.talanta.2013.02.026

    Article  CAS  Google Scholar 

  197. Fortes FJ, Laserna JJ (2010) The development of fieldable laser-induced breakdown spectrometer: No limits on the horizon. Spectrochim Acta Part B-Atomic Spectrosc 65(12):975–990. doi:10.1016/j.sab.2010.11.009

    Article  CAS  Google Scholar 

  198. Instruments O mPulse. http://www.oxford-instruments.com/products/analysers/handheld-analysers/handheld-libs-mpulse-scrap-metal-analyser

  199. LaserSec iLIBS Engine

  200. Haisch C (2012) Photoacoustic spectroscopy for analytical measurements. Measurement Science & Technology 23 (1). doi:10.1088/0957-0233/23/1/012001

  201. Chien H-T, Wang K, Sheen S-H, Raptis ACP (2012) Photoacoustic Spectroscopy (PAS) System for Remote Detection of Explosives, Chemicals and Special Nuclear Materials. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIII 8358. doi:10.1117/12.919351

  202. Chen X, Guo D, Choa FS, Wang CC, Trivedi S, Snyder AP, Ru GJF (2013) Standoff photoacoustic detection of explosives using quantum cascade laser and an ultrasensitive microphone. Appl Opt 52(12):2626–2632. doi:10.1364/ao.52.002626

    Article  Google Scholar 

  203. Patimisco P, Scamarcio G, Tittel FK, Spagnolo V (2014) Quartz-Enhanced Photoacoustic Spectroscopy: A Review. Sensors 14(4):6165–6206. doi:10.3390/s140406165

    Article  CAS  Google Scholar 

  204. Sausa RC, Cabalo JB (2012) The Detection of Energetic Materials by Laser Photoacoustic Overtone Spectroscopy. Appl Spectrosc 66(9):993–998. doi:10.1366/12-06699

    Article  CAS  Google Scholar 

  205. Bauer C, Willer U, Schade W (2010) Use of quantum cascade lasers for detection of explosives: progress and challenges. Optical Engineering 49 (11). doi:10.1117/1.3498771

  206. Choa F-S (2014) Chemical and explosive detections using photo-acoustic effect and quantum cascade lasers. Quantum Sensing and Nanophotonic Devices Xi 8993. doi:10.1117/12.2032026

  207. Van Neste CW, Liu X, Gupta M, Kim S, Tsui Y, Thundat T (2012) Standoff detection of explosive residues on unknown surfaces. Micro- and Nanotechnology Sensors, Systems, and Applications Iv 8373. doi:10.1117/12.920510

  208. Dongkyu L, Seonghwan K, Van Neste CW, Moonchan L, Sangmin J, Thundat T (2014) Photoacoustic spectroscopy of surface adsorbed molecules using a nanostructured coupled resonator array. Nanotechnology 25 (3):035501 (035506 pp.)-035501 (035506 pp.). doi:10.1088/0957-4484/25/3/035501

  209. Haupt R (2013) Photoacoustic sensing of explosives.

  210. Skvortsov LA, Maksimov EM (2010) Application of laser photothermal spectroscopy for standoff detection of trace explosive residues on surfaces. Quantum Electron 40(7):565–578. doi:10.1070/QE2010v040n07ABEH014334

    Article  CAS  Google Scholar 

  211. Sharma RC, Kumar D, Bhardwaj N, Gupta S, Chandra H, Maini AK (2013) Portable detection system for standoff sensing of explosives and hazardous materials. Opt Commun 309:44–49. doi:10.1016/j.optcom.2013.06.025

    Article  CAS  Google Scholar 

  212. Willer U, Schade W (2009) Photonic sensor devices for explosive detection. Anal Bioanal Chem 395(2):275–282. doi:10.1007/s00216-009-2934-2

    Article  CAS  Google Scholar 

  213. Giubileo G, Colao F, Puiu A (2012) Identification of standard explosive traces by infrared laser spectroscopy: PCA on LPAS data. Laser Phys 22(6):1033–1037. doi:10.1134/s1054660x12060035

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. The authors gratefully acknowledge the support of this study by Eric Sanders.

Conflict of interest

The authors declare that they have no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Moore.

Additional information

ABC Highlights: authored by Rising Stars and Top Experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, K.E., Greenfield, M.T., McGrane, S.D. et al. Advances in explosives analysis—part II: photon and neutron methods. Anal Bioanal Chem 408, 49–65 (2016). https://doi.org/10.1007/s00216-015-9043-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9043-1

Keywords

Navigation