Skip to main content

Advertisement

Log in

Size selective sampling using mobile, 3D nanoporous membranes

  • Short Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We describe the fabrication of 3D membranes with precisely patterned surface nanoporosity and their utilization in size selective sampling. The membranes were self-assembled as porous cubes from lithographically fabricated 2D templates (Leong et al., Langmuir 23:8747–8751, 2007) with face dimensions of 200 μm, volumes of 8 nL, and monodisperse pores ranging in size from approximately 10 μm to 100 nm. As opposed to conventional sampling and filtration schemes where fluid is moved across a static membrane, we demonstrate sampling by instead moving the 3D nanoporous membrane through the fluid. This new scheme allows for straightforward sampling in small volumes, with little to no loss. Membranes with five porous faces and one open face were moved through fluids to sample and retain nanoscale beads and cells based on pore size. Additionally, cells retained within the membranes were subsequently cultured and multiplied using standard cell culture protocols upon retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schafer A (2005) Nanofiltration principles and applications. Elsevier, New York, NY

    Google Scholar 

  2. Choi JW (2006) Methods Mol Biol 321:65–81

    CAS  Google Scholar 

  3. Yu H (1998) Anal Chim Acta 376:77–81

    Article  CAS  Google Scholar 

  4. Van Emon JM, Gerlach CL, Bowman K (1998) J Chromatogr, B 715:211–228

    Article  Google Scholar 

  5. Singh PC, Singh RK (1996) Trends Food Sci Technol 7:49–58

    Article  CAS  Google Scholar 

  6. Yamamoto H, Liljestrand HM, Shimizu Y, Morita M (2003) Environ Sci Technol 37:2646–2657

    Article  CAS  Google Scholar 

  7. Nakao S, Kimura S (1982) J Chem Eng Jpn 15:200–205

    Article  CAS  Google Scholar 

  8. Athanassiadou P, Grapsa D (2006) Cancer Metastasis Rev 25:507–519

    Article  Google Scholar 

  9. Fleischer RL, Price PB, Walker RM (1965) Science 149:383–393

    Article  CAS  Google Scholar 

  10. Vona G, Sabile A, Louha M, Sitruk V, Romana S, Schütze K, Capron F, Franco D, Pazzagli M, Vekemans M, Lacour B, Bréchot C, Paterlini-Bréchot P (2000) Am J Pathol 156:57–63

    CAS  Google Scholar 

  11. Knudson RP, Alden ER (1980) Pediatrics 65:505–507

    CAS  Google Scholar 

  12. Leong T, Lester PA, Koh TL, Call E, Gracias DH (2007) Langmuir 23:8747–8751

    Article  CAS  Google Scholar 

  13. Graham D (2006) Molecular self-assembly. Sigma Aldrich, Milwaukee WI

    Google Scholar 

  14. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Chem Rev 105:1103–1169

    Article  CAS  Google Scholar 

  15. L929, ATCC Number: CCL-1 product guide. [cited 21 July 2007]; Available from: http://www.atcc.org/

  16. Live/Dead Viability/Cytotoxicity Kit, Invitrogen Number: L3224 product guide.[cited 10 September 2008]; Available from: http://probes.invitrogen.com/

  17. Ismagilov RF, Schwartz A, Bowden N, Whitesides GM (2002) Angew Chem, Int Ed 41:65–654

    Article  Google Scholar 

  18. Dhillon S (2006) Clinical pharmacokinetics. Pharmaceutical, London UK

    Google Scholar 

  19. Randall CL, Leong TG, Bassik N, Gracias DH (2007) Adv Drug Delivery Rev 59:1547–1561

    Article  CAS  Google Scholar 

  20. Park TH, Shuler ML (2003) Biotechnol Prog 19:243–253

    Article  CAS  Google Scholar 

  21. Metallo CM, Mohr JC, Detzel CJ, Pablo JJ, Wie BJ, Palecek SP (2007) Biotechnol Prog 23:18–23

    Article  CAS  Google Scholar 

  22. Hung SC, Chen NJ, Hsieh SL, Li H, Ma HL, Lo WH (2002) Stem Cells 20:249–258

    Article  Google Scholar 

  23. Mohr JC, de Pablo JJ, Palecek SP (2006) Biomat 27:6032–6042

    Article  CAS  Google Scholar 

  24. Ye H, Randall CL, Leong TG, Slanac DA, Call EK, Gracias DH (2007) Angew Chem, Int Ed 46:4991–4994

    Article  CAS  Google Scholar 

  25. Pihl J, Karlsson M, Chiu DT (2005) Drug Discov Today 10:1377–1383

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH Grant: R21EB007487-01A1 and the NSF Grant MRSEC DMR05-20491. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies. We acknowledge Anum Azam for her illustration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Gracias.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Movie clip showing autonomous motion of a Pt-coated membrane in a peroxide solution. This material is available free of charge via the Internet at http://pubs.acs.org (AVI 6049 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randall, C.L., Gillespie, A., Singh, S. et al. Size selective sampling using mobile, 3D nanoporous membranes. Anal Bioanal Chem 393, 1217–1224 (2009). https://doi.org/10.1007/s00216-008-2538-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2538-2

Keywords

Navigation