Structure, fragmentation patterns, and electronic properties of small indium oxide clusters

  • R. H. Aguilera-del-Toro
  • F. Aguilera-Granja
  • L. C. Balbás
  • A. Vega
Regular Article
  • 58 Downloads

Abstract

A theoretical study of nanoparticles of indium oxide, one of the most relevant transparent conducting materials, is reported. By means of Density Functional Theory in the generalized gradient approximation, we investigated the atomic and electronic structures of the neutral and charged indium oxide clusters \(\text{In}_n\text{O}_m^{0/\pm }\) with n = 1–6 and m = 1–8, as well as related properties like adiabatic ionization potentials and electron affinities. Based on total energy differences between the obtained global minimum configurations of parent clusters and possible fragments, we explored the respective fragmentation channels for cationic clusters and compared our results with those recently observed in Photodissociation measurements (Knight et al. in IJMS 304:29, 2011). The overall good agreement between theory and experiment provides compelling evidence of the calculated properties of these systems, whose knowledge is essential to take advantage of the nanoscale in future technological applications of these materials.

Keywords

DFT Metal oxide clusters Indium clusters Photo-fragmentation 

Notes

Acknowledgements

We acknowledge the support of the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (Project FIS2014-59279-P). R.H.A-T acknowledges the financial support provided by the University of Valladolid for a research visit and a fellowship from CONACyT (Mexico, scholarship 415121).

References

  1. 1.
    Liang YX, Li SQ, Nie L, Wang YG, Wang TH (2006) Appl Phys Lett 88:193119CrossRefGoogle Scholar
  2. 2.
    Kim DW, Hwang IS, Kwon SJ, Kang HY, Park KS, Choi YJ, Choi K, Par JG (2007) Nano Lett 7:3041–3045CrossRefGoogle Scholar
  3. 3.
    Curreli M, Li C, Sun Y, Lei B, Gundersen MA, Thompson M, Zhou C (2005) J Am Chem Soc 127:6922–6823CrossRefGoogle Scholar
  4. 4.
    Bianchoi S, Comoni E, Ferroni M, Faglia G, Vomiero A, Sberveglieri G (2006) Sens Actuators B 118:204–207CrossRefGoogle Scholar
  5. 5.
    Li B, Xie Y, Jing M, Rong G, Tang Y, Zhang G (2006) Langmuir 22:9380–9385CrossRefGoogle Scholar
  6. 6.
    Xu J, Wang X, Shen J (2006) Sens Actuators B 115:642–646CrossRefGoogle Scholar
  7. 7.
    Gurlo A, Ivanovskaya M, Barsan N, Schweizer-Berberich M, Weimar U, Gopel W, Dieguez A (1997) Sens Actuators B 44:327–333CrossRefGoogle Scholar
  8. 8.
    Murali A, Barve A, Leppert VJ, Risbud SH, Kennedy IM, Kennedy Lee HWH (2001) Nano Lett 1:287–289CrossRefGoogle Scholar
  9. 9.
    Epifani M, Siciliano P (2004) J Am Chem Soc 126:4078–4079CrossRefGoogle Scholar
  10. 10.
    Seo WS, Jo HH, Lee K, Park JT (2003) Adv Mater 15:795–797CrossRefGoogle Scholar
  11. 11.
    Zhou H, Cai W, Zhang L (1999) Mater Res Bull 34:845–849CrossRefGoogle Scholar
  12. 12.
    Shi S, Liu Y, Li Y, Deng B, Zhan C, Jiang GA (2016) Comput Theor Chem 1079:47–56CrossRefGoogle Scholar
  13. 13.
    Knight AM, Bandyopadhyay B, Anfuso CL, Molek KS, Duncan MA (2011) IJMS 304:29–35Google Scholar
  14. 14.
    Janssens E, Neukermans S, Vanhoutte F, Silverans RE, Lievens P, Navarro-Vazquez A, Schleyer PVR (2003) J Chem Phys 118:5862–5871CrossRefGoogle Scholar
  15. 15.
    Mukhopadhyay S, Gowtham S, Pandey R, Costales A (2010) J Mol Struct THEOCHEM 948:31–35CrossRefGoogle Scholar
  16. 16.
    Zhanpeisov NU, Nakatani H, Fukumura H (2011) Res Chem Intermed 37:647–658CrossRefGoogle Scholar
  17. 17.
    Walsh A, Woodley SM (2010) Phys Chem Chem Phys 12:8446–8453CrossRefGoogle Scholar
  18. 18.
    Woodley SM (2011) Proc R Soc A 467:2020–2042CrossRefGoogle Scholar
  19. 19.
    Sierka M, Dobler J, Sauer J, Santambrogio G, Brummer M, Woste L, Janssens E, Meijer G, Asmis KR (2007) Angew Chem Int Ed 46:3372–3375CrossRefGoogle Scholar
  20. 20.
    Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) J Phys Condens Matter 14:2745–2779CrossRefGoogle Scholar
  21. 21.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3865CrossRefGoogle Scholar
  22. 22.
    Troullier N, Martins JL (1991) Phys Rev B 43:1993–2006CrossRefGoogle Scholar
  23. 23.
    Kleinman L, Bylander DM (1982) Phys Rev Lett 48:1425–1428CrossRefGoogle Scholar
  24. 24.
    Louie SG, Froyen S, Cohen ML (1982) Phys Rev B 26:1738–1742CrossRefGoogle Scholar
  25. 25.
    Aguilera-del-Toro RH, Aguilera-Granja JF, Vega A, Balbás LC (2014) Phys Chem Chem Phys 16:21732–21741CrossRefGoogle Scholar
  26. 26.
    Kresse G, Hafner J (1993) Phys Rev B 47:558–561CrossRefGoogle Scholar
  27. 27.
    Kresse G, Furthmüller J (1996) Phys Rev B 56:11169–11186CrossRefGoogle Scholar
  28. 28.
    Zhang Y, Yang W (1998) Phy Rev Lett 80:890CrossRefGoogle Scholar
  29. 29.
    Klimes J, Bowler DR, Michaelides A (2010) J Phys Condens Matter 22:022201CrossRefGoogle Scholar
  30. 30.
    Boys SF, Bernardy F (1970) Mol Phys 19:553–566CrossRefGoogle Scholar
  31. 31.
    Bredas JL (2014) Mater Horiz 1:17–19CrossRefGoogle Scholar
  32. 32.
    DeMaria G, Drowart J (1959) J Chem Phys 31:1076–1081CrossRefGoogle Scholar
  33. 33.
    Gausa M, Ganteför G, Lutz HO, Meiwes-Broer KH (1990) Int J Mass Spectrom Ion Processes 101:227–237CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • R. H. Aguilera-del-Toro
    • 1
    • 2
  • F. Aguilera-Granja
    • 1
  • L. C. Balbás
    • 2
  • A. Vega
    • 2
  1. 1.Instituto de FísicaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Departamento de Física Teórica, Atómica y ÓpticaUniversidad de ValladolidValladolidSpain

Personalised recommendations