Skip to main content
Log in

Effects of monohydration on an adenine–thymine base pair

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We analyzed the monohydration effect on the hydrogen-bonded structure between the adenine–thymine base pair using path integral molecular dynamics simulations including the nuclear quantum and thermal effects. We focused on two monohydration models for an adenine–thymine base pair with a water molecule bound to each adenine and thymine site. The adenine–thymine base pair without a water molecule was also discussed to reveal the role of a water molecule in monohydrated models. We found that the monohydration effect varies depending on the location of the water molecule. The monohydration effect on the inter-molecular motions is also investigated using the principle component analysis. The monohydration alters the inter-molecular motions of adenine–thymine base pair. We found that the nuclear quantum effect on the motion depends on the positions of the bound water molecule. The nuclear quantum effect on the hydrogen-bonded structure of adenine, thymine and water molecules is rather small, but we found significantly large nuclear quantum effect on the inter-molecular motions of the monohydrated base pair systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Watson JD, Crick FHC (1953) Nature 171:737–738

    Article  CAS  Google Scholar 

  2. Plützer C, Hünig I, Kleinermanns K, Nir E, Vries DSM (2003) Chem Phy Chem 4:838–842

    Google Scholar 

  3. Krishnan GM, Kühn O (2007) Chem Phys Lett 435:132–135

    Article  CAS  Google Scholar 

  4. Plützer C, Hünig I, Kleinermanns K (2003) Phys Chem Chem Phys 5:1158–1163

    Article  Google Scholar 

  5. Urashima S, Asami H, Ohba M, Saigusa H (2010) J Phys Cham A 114:11231–11237

    Article  CAS  Google Scholar 

  6. Abo-Riziq A, Crews B, Grace L, Vries SM (2005) J Am Chem Soc 127:2374–2375

    Article  CAS  Google Scholar 

  7. Bakker JM, Compagnon I, Meijer G, Helden G, Kabelác M, Hobza P, Vries MS (2004) Phys Chem Chem Phys 6:2810–2815

    Article  CAS  Google Scholar 

  8. Guerra CF, Bickelhaupt FM, Sniders JG, Baerends EJ (2000) J Am Chem Soc 122:4117–4128

    Article  CAS  Google Scholar 

  9. Cerón-Carrasco JP, Requena A, Michaux C, Perpete EA, Jacquemin D (2009) J Phys Chem A 113:7892–7898

    Article  Google Scholar 

  10. Belau L, Wilson KR, Leone AR, Ahmed M (2007) J Phys Chem A 111:7562–7568

    Article  CAS  Google Scholar 

  11. Rueda M, Kalko SG, Luque FJ, Orozco M (2003) J Am Chem Soc 125:8007–8014

    Article  CAS  Google Scholar 

  12. Daido M, Koizumi A, Shiga M, Tachikawa M (2011) Theor Chem Acc 130:385–391

    Article  CAS  Google Scholar 

  13. Daido M, Kawashima Y, Tachikawa M (2013) J Comp Chem 34:2403–2411

    Article  CAS  Google Scholar 

  14. Jiří H, Jan R, Pavel H (2013) Chem Phys Lett 568–569:161–166

    Google Scholar 

  15. Antone M, Gerald M, Manuel FR (2014) J Chem Phys 141:034106

    Article  Google Scholar 

  16. Tachikawa M, Shiga M (2005) J Am Chem Soc 127:11908–11909

    Article  CAS  Google Scholar 

  17. Suzuki K, Shiga M, Tachikawa M (2008) J Chem Phys 129:144310

    Article  Google Scholar 

  18. Suzuki K, Tachikawa M, Shiga M (2010) J Chem Phys 132:144108

    Article  Google Scholar 

  19. Koizumi A, Suzuki K, Shiga M, Tachikawa M (2011) J Chem Phys 134:031101

    Article  Google Scholar 

  20. Kawashima Y, Tachikawa M (2013) Chem Phys Lett 571:23–27

    Article  CAS  Google Scholar 

  21. Ogata Y, Daido M, Kawashima Y, Tachikawa M (2013) RSC Adv 3:25252–25257

    Article  CAS  Google Scholar 

  22. Sugioka Y, Yoshikawa T, Takayanagi T (2014) J Phys Chem A 117:11403–11410

    Article  Google Scholar 

  23. Villani G (2005) Chem Phys 316:1–8

    Article  CAS  Google Scholar 

  24. Villani G (2006) Chem Phys 324:438–446

    Article  CAS  Google Scholar 

  25. Villani G (2008) J Chem Phys 128:114306

    Article  Google Scholar 

  26. Kitao A, Go N (1999) Curr Opin Struct Biol 9:164

    Article  CAS  Google Scholar 

  27. Potoyan DA, Papoian GA (2011) J Am Chem Soc 133:7405

    Article  CAS  Google Scholar 

  28. Martyna GJ, Klein ML, Tuckerman M (1992) J Chem Phys 97:2635

    Article  Google Scholar 

  29. Korth M (2010) J Chem Theory Comput 6:3808–3816

    Article  CAS  Google Scholar 

  30. MOPAC2009, James JPS (2008) Stewart computational chemistry, Colorado Springs, CO, USA. http://OpenMOPAC.net

  31. Srinivasan AR, Sauers RR, Fenley MO, Boschitsch AH, Matsumoto A, Colasanti AV, Olson WK (2009) Biophys Rev 1:13–20

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam MJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian, Inc., Wallingford CT

  33. Brooks B, Karplus M (1983) Proc Natl Acad Sci USA 80:6571–6575

    Article  CAS  Google Scholar 

  34. Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503–506

    Article  CAS  Google Scholar 

  35. Saebø S, Almlöf J (1989) Chem Phys Lett 154:83–89

    Article  Google Scholar 

  36. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275–280

    Article  CAS  Google Scholar 

  37. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:281–289

    Article  CAS  Google Scholar 

  38. Head-Gordon M, Head-Gordon T (1994) Chem Phys Lett 166:122–128

    Article  Google Scholar 

  39. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  40. Stewart JJP (1989) J Comp Chem 10:209–220

    Article  CAS  Google Scholar 

  41. Stewart JJP (1989) J Comp Chem 10:221–264

    Article  CAS  Google Scholar 

  42. Stewart JJP (1991) J Comp Chem 12:320–341

    Article  CAS  Google Scholar 

  43. Anders E, Koch R, Freunscht P (1993) J Comp Chem 14:1301–1312

    Article  CAS  Google Scholar 

  44. Stewart JJP (2007) J Mol Model 13:1173–1213

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partly supported by a JSPS/MEXT KAKENHI Grant-in-Aid for Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Tachikawa.

Additional information

Published as part of the special collection of articles derived from the 9th Congress on Electronic Structure: Principles and Applications (ESPA 2014).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 359 kb)

Appendix

Appendix

We analyzed the inter-molecular motions of buckle and propeller modes of adenine–thymine pair introducing a simple geometric model as shown in Fig. 4. The model is constructed with two plates \(h_{1} h_{2} r_{1} r_{2}\) and \(h_{1} h_{2} r_{3} r_{4}\) connected by two hinges \(h_{1}\) and \(h_{2}\). We assign 2a to both hydrogen-bond lengths and \(z_{0}\) to the distance between two hydrogen bonds in this model. We fix the plate \(h_{1} h_{2} r_{3} r_{4}\) on the zx plane. The angles \(\theta_{1}\) and \(\theta_{2}\) are defined as angles between vector \(\overrightarrow {{r_{1} h_{1} }}\) and the zx plane and vector \(\overrightarrow {{r_{2} h_{2} }}\) and the zx plane, respectively. The angle between \(\overrightarrow {{{\text{OM}}_{1} }}\) and \(\overrightarrow {{{\text{M}}_{2} {\text{O}}}}\) is \(\phi_{1}\), and the angle between \(r_{1} - r_{2}\) and \(r_{3} - r_{4}\) is \(\phi_{2}\). The displacement of \(\phi_{1}\) and \(\phi_{2}\) corresponds to the buckle and propeller modes, respectively. These angles \(\phi_{1}\) and \(\phi_{2}\) are expressed as follows using \(\theta_{1}\) and \(\theta_{2}\).

$$\phi_{1} = \frac{{\cos \theta_{1} + \cos \theta_{2} }}{{\sqrt {2\cos \left( {\theta_{1} - \theta_{2} } \right) + 2} }},$$
(3)

and

$$\phi_{2} = \frac{{z_{0} }}{{\sqrt {2a^{2} \cos \left( {\theta_{1} - \theta_{2} } \right) + 2a^{2} + z_{0}^{2} } }}.$$
(4)

When \(\theta_{1}\) and \(\theta_{2}\) are small, Eqs. (3) and (4) can be approximated as

$$\phi_{1} = \frac{{\theta_{1} + \theta_{2} }}{2},$$
(5)

and

$$\phi_{2} = \frac{{a(\theta_{1} - \theta_{2} )}}{{z_{0} }}.$$
(6)

The displacement ratio of buckle and propeller modes corresponds to the ratio of \(\phi_{1}\) and \(\phi_{2}\). The relation can be written as

$$\frac{{\phi_{2} }}{{\phi_{1} }} = \frac{2a}{{z_{0} }} \times \frac{{1 - \theta_{2} /\theta_{1} }}{{1 + \theta_{2} /\theta_{1} }}.$$
(7)

Figure 5 shows the relation between \(\phi_{2} /\phi_{1}\) and \(\theta_{2} /\theta_{1}\) in Eq. (7). We set the parameter \(a\) to be \(a/z_{0} = 1\). Only the buckle mode exists when \(\theta_{1} = \theta_{2}\) and \(\phi_{2} /\phi_{1} = 0\), while only the propeller mode exists when \(\theta_{1} = - \theta_{2}\) and \(\phi_{2} /\phi_{1} = \infty\). In other areas, both buckle and propeller modes exist. The figure shows that the ratio of buckle and propeller modes may alter if the vibrational frequencies of the hydrogen-bond angle shift. The ratio depends on the difference between \(\theta_{1}\) and \(\theta_{2}\) and can rapidly change from buckle dominant motion (region around \(\theta_{1} = \theta_{2}\)) to propeller dominant motion (region around \(\theta_{1} = - \theta_{2}\)). Our finding indicates that the small difference in the hydrogen-bond structure may lead to large difference in molecular motion.

Fig. 4
figure 4

A simple geometric model for the buckle and propeller modes of the adenine–thymine pair

Fig. 5
figure 5

The relation between \(\phi_{2} /\phi_{1}\) and \(\theta_{2} /\theta_{1}\) in Eq. (7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, S., Ogata, Y., Kawatsu, T. et al. Effects of monohydration on an adenine–thymine base pair. Theor Chem Acc 134, 84 (2015). https://doi.org/10.1007/s00214-015-1686-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1686-7

Keywords

Navigation