Skip to main content
Log in

L-linalool exerts a neuroprotective action on hemiparkinsonian rats

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Linalool (LIN) is a monoterpene, responsible for the aroma of essential oils in some species. It presents a sedative and anxiolytic potential, enhancing GABAergic currents and behaving as a benzodiazepine-type of drug. The objectives of the present work were to study the neuroprotective effects of LIN on a model of Parkinson’s disease. For that, male Wistar rats were divided into the following groups: sham-operated (SO), 6-OHDA-lesioned, and 6-OHDA-lesioned and treated with LIN (25, 50, and 100 mg/kg, p.o.) for 2 weeks. Afterwards, the animals were subjected to behavioral tests (apomorphine-induced rotations, open field, and forced swimming tests). Then, the animals were euthanized, and the striatum, hippocampus, and prefrontal cortex were processed for neurochemistry (nitrite and lipoperoxidation measurements) and immunohistochemistry (TH and DAT) assays. The results were analyzed by ANOVA and Tukey’s test for multiple comparisons and considered significant at p < 0.05. LIN significantly improved the behavioral alterations of the 6-OHDA-lesioned group, as evaluated by the apomorphine-induced rotations, open field, and forced swimming tests. In addition, LIN partially reversed the decreased DA, DOPAC, and HVA contents observed in the 6-OHDA-lesioned striatum. The untreated 6-OHDA group presented increased nitrite contents and lipoperoxidation in all the brain areas studied, and these changes were completely reversed after LIN treatments. Finally, LIN significantly prevented the reduction in TH and DAT expressions demonstrated in the right 6-OHDA-lesioned striatum. All these data strongly suggest that LIN presents a neuroprotective action in hemiparkinsonian rats, probably related to the drug anti-inflammatory and antioxidant activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ayaz M, Sadiq A, Junaid M, Ullah F, Subhan F, Ahmed J (2017) Neuroprotective and anti-aging potentials of essential oils from aromatic and medicinal plants. Front Aging Neurosci 9:168. https://doi.org/10.3389/fngi,2017.00168

    Article  PubMed  PubMed Central  Google Scholar 

  • Batista PA, Werner MF, Oliveira EC, Burgos L, Pereira P, Brum LF, Story GM, Santos AR (2010) The antinociceptive effect of (-)-linalool in models of chronic inflammatory and neuropathic hipersensitivity in mice. J Pain 11:1229–1239.

  • Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR (2015) Oxidative stress and Parkinson's disease. Front Neuroanat 9:91. https://doi.org/10.3389/fnana.2015.00091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks DJ (2010) Imaging dopamine transporters in Parkinson's disease. Biomark Med 4:651–660

    CAS  PubMed  Google Scholar 

  • Brum LFS, Emanuelli T, Souza DO, Elisabetsky E (2001) Effects of linalool on glutamate release and uptake in mouse cortical synaptosomes. Neurochem Res 26:191–194

    CAS  Google Scholar 

  • Caputo L, Reguilon MD, Minarro J, De Feo V, Rodriguez-Arias M (2018) Lavandula angustifólia essential oil and linalool counteract social aversion induced by social defeat. Molecules. 2018:23,2694. https://doi.org/10.3390/molecules23102694

    Article  CAS  Google Scholar 

  • CONCEA (2010) Diretriz Brasileira para o Cuidado e Utilização de Animais para Fins Científicos e Didáticos. Resolução Normativa n.30. Ministériom da Ciência, Tecnologia e Inovação. http://www.mct.gov.br/upd_blob/0238/238685.pdf

  • Dali LM, Ulrich H, Real CC, Feng ZP, Sun HS, Britto LR (2017) Carvacrol promotes neuroprotection in the mouse hemiparkinsonian model. Neurosci. 356:176–181

    Google Scholar 

  • Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Meth Enzymol 186:421–431

    CAS  PubMed  Google Scholar 

  • Elisabetsky E, Marschner J, Souza DO (1995) Effects of linalool on glutamatergic system in the rat cerebral cortex. Neurochem Res 20:461–465

    CAS  PubMed  Google Scholar 

  • Elisabetsky E, Brum LF, Souza DO (1999) Anticonvulsant properties of linalool in glutamate-related seizure models. Phytomed. 6:107–113

    CAS  Google Scholar 

  • Galvan A, Wichmann T (2008) Pathophysiology of parkinsonism. Clin Neurophysiol 119:1459–1474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126:131–138

    CAS  PubMed  Google Scholar 

  • Haavik J, Toska K (1998) Tyrosine hydroxylase and Parkinson's disease. Mol Neurobiol 16:285–309

    CAS  PubMed  Google Scholar 

  • Harada H, Kashiwadani H, Kanmura Y, Kuwaki T (2018) Linalool odor-induced anxiolytic effects in mice. Front Behav Neurosci 12:241. https://doi.org/10.3389/fnbeh.2018.00241 eCollection 2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hefti F, Melamed E, Sahakian BJ, Wurtman RJ (1980) Circling behavior in rats with partial, unilateral nigro-striatal lesions: effect of amphetamine, apomorphine, and DOPA. Pharmacol Biochem Behav 12:185–188

    CAS  PubMed  Google Scholar 

  • Hudson JL, van Horne CG, Strömberg I, Brock S, Clayton J, Masserano J, Hoffer BJ, Gerhardt GA (1993) Correlation of apomorphine- and amphetamine-induced turning with nigrostriatal dopamine content in unilateral 6-hydroxydopamine lesioned rats. Brain Res 626:167–174

    CAS  PubMed  Google Scholar 

  • Hui L, He L, Huan L, Xiao Lan L, Al Guo Z (2010) Chemical composition of lavender essential oil and its antioxidant activity and inhibition against rhinitis-related bacterial. African J Microbiol Res 4:309–313

    Google Scholar 

  • Huo M, Cui X, Xue J, Chi G, Gao R, Deng X, Guan S, Wei J, Soromou LW, Feng H, Wang D (2013) Anti-inflammatory effects of linalool in RAW 264.7 macrophages and lipopolysaccharide-induced lung injury model. J Surg Res 180:e47–e54

    CAS  PubMed  Google Scholar 

  • Hwang O (2013) Role of oxidative stress in Parkinson's disease. Exp Neurobiol 22:11–17

    PubMed  PubMed Central  Google Scholar 

  • Jarvis GE, Barbosa R, and Thompson AJ (2016a). J Pharmacol Exp Ther. 356:549–562

  • Jarvis GE, Barbosa R, Thompson AJ (2016b) Noncompetitive inhibition of 5-HT3 receptors by citral, linalool and eucalyptol revealed by nonlinear mixed-effects modeling. J Pharmacol Exp Ther 356:549–563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jasinska-Myga B, Putzke JD, Wider C, Wszolek ZK, Uitti RJ (2010) Depression in Parkinson’s disease. Can J Neurol Sci 37:61–66

    PubMed  PubMed Central  Google Scholar 

  • Jaul E, Barron J (2017) Age-related diseases and clinical and public health implications for the 85 years old and over population. Front Publ Health 11(5):335

    Google Scholar 

  • Javed H, Azirnullah S, Khair SBA, Ojha S, Haque ME (2016) Neuroprotective effect of nerolidol against neuroinflammation and oxidative stress induced by rotenone. BMC Neurosci 17:58. https://doi.org/10.1186/s12868-016-0293-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javed H, Azimullah S, Meeran MFN, Ansari SA, Ojha S (2019) Neuroprotective effects of thymol, a dietary monoterpene against dopaminergic neurodegeneration in rotenone-induced rat model of Parkinson’s disease. Int J Mol Sci 20:1538. https://doi.org/10.3390/ijms20071538

    Article  CAS  PubMed Central  Google Scholar 

  • Kasper S, Gastpar M, Muller WE, Volz HP, Moller HJ, Dienel A, Schlafke S (2010) Efficacy and safety of silexan, a new, orally administered lavender oil preparation, in subthreshold anxiety disorder-evidence from clinical trials. Wien Med Wochenschr 160:547–556

    PubMed  Google Scholar 

  • Leszek J, Barreto GE, Gasiorowski K, Koutsouraki E, Ávila-Rodrigues M, Aliev G (2016) Inflammatory mechanisms and oxidative stress as key factors responsible for progression of neurodegeneration: role of brain innate immune system. CNS Neurol Disord Drug Targets 15(3):2016. https://doi.org/10.2174/187152731566660202125914

    Article  Google Scholar 

  • Li XJ, Yang YJ, YS LI, Zhang WK, Tang HB (2016) α-Pinene, linalool, and 1-octanol contribute to the topical anti-inflammatory and analgesic activities of frankincense by inhibiting COX-2. J Ethnopharmacol 179:22–26

    CAS  PubMed  Google Scholar 

  • Liu K, Chen Q, Liu Y, Zhou X, Wang X (2012) Isolation and biological activities of decanal, linalool, valencene, and octanal from sweet orange oil. J Food Sci 77:C1156–C1161

    CAS  PubMed  Google Scholar 

  • Mehri S, Meshki MA, Hosseinzadeh H (2015) Linalool as a neuroprotective agent against acrylamide-induced neurotoxicity in Wistar rats. Drug Chem Toxicol 38:162–166

    CAS  PubMed  Google Scholar 

  • Mercanti G, Bazzu G, Giusti P (2012) A 6-hydroxydopamine in vivo model of Parkinson's disease. Methods Mol Biol 846:355–364

    CAS  PubMed  Google Scholar 

  • Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, Laurie C, Gendelman HE (2006) Neuroinflammation, oxidative stress and the pathogenesis of Parkinson’s disease. Clin Neurosci Res 6:261–281

    CAS  PubMed  PubMed Central  Google Scholar 

  • National Research Council (2011) Guide for the Care and Use of Laboratory 8th edition. The National Academies Press. Washington, D.C. www.nap.edu

  • Nutt JG, Burchiel KJ, Comella CL, Jankovic J, Lang AE, Laws ER Jr et al (2003) Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology. 14:69–73

    Google Scholar 

  • Park SN, Lim YK, Freire MO, Cho E, Jin D, Kook JK (2012) Antimicrobial effect of linalool and α-terpineol against periodontopathic and cariogenic bacteria. Anaerobe 18:369–372

    CAS  PubMed  Google Scholar 

  • Park H, Seol GH, Ryu S, Choi IY (2016) Neuroprotective effects of (−)-linalool against oxygen-glucose deprivation-induced neuronal injury. Arch Pharm Res 39:555–564

    CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates, 5th edn. Academic Press, San Diego

    Google Scholar 

  • Peana AT, D’Aquila PS, Panin F, Serra G, Pippia P, Moretti MDL (2002) Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomed 9:721–726

    CAS  Google Scholar 

  • Perez-Pardo P, Kliest T, Dodiya HB, Broersen LM, Garssen J, Keshavarzian A, Kraneveld AD (2017) The gut-brain axis in Parkinson’s disease: possibilities for food-base therapies. Eur J Pharmacol 817:86–95

    CAS  PubMed  Google Scholar 

  • Porres-Martinez M, González-Burgos E, Carretero ME, Gómez-Serranillos MP (2016) In vitro neuroprotective potential of the monoterpenes alpha-pinene and 1,8-cineole against H2O2-induced oxidative stress in PC12 cells. Naturforsch C 71:191–199

    CAS  Google Scholar 

  • Sabogal-Guáqueta AM, Osorio E, Cardona-Gómez GP (2016) Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer’s mice. Neuropharmacol 102:111–120

    Google Scholar 

  • Salvatore MF (2014) Ser 31 Tyrosine hydroxylase phosphorilation parallels differences in dopamine recovery in nigrostriatal pathway following 6-OHDA lesion. J Neurochem 129:548–558

  • Santos SF, Oliveira HL, Yamada ES, Neves BC, Pereira A Jr (2019) The gut and Parkinson’s disease- a bidirectional pathway. Front Neurol 10:574. https://doi.org/10.3389/fneur.2019.00574 eCollection 2019

    Article  PubMed  PubMed Central  Google Scholar 

  • Silberman CD, Rodrigues CS, Engelhardt E, Laks J (2013) The impact of depression on survival of Parkinson’s disease patients: a five-year study. J Bras Psiquiatr 62:8–12

    Google Scholar 

  • Silva LL, Balconi LS, Gressler LT, Garlet QI, Sutili FJ, Vargas APC, Baldisserotto B, Morel AF, Heinzmann BM (2017) S-(+)- and R-(−)-linalool: a comparison of the in vitro anti-Aeromonas hydrophila activity and anesthetic properties in fish. An Acad Bras Ciênc 89:203–212

    CAS  PubMed  Google Scholar 

  • Simola N, Morelli M, Carta AR (2007) The 6-hydroxydopamine model of Parkinson's disease. Neurotox Res 11:151–167

    CAS  PubMed  Google Scholar 

  • Snijders AH, Leunissen I, Bakker M, Overeem S, Helmich RC, Bloem BR, Toni I (2011) Gait-related cerebral alterations in patients with Parkinson's disease with freezing of gait. Brain 134(Pt 1):59–72

    PubMed  Google Scholar 

  • Souto-Maior FN, de Carvalho FL, de Morais LC, Netto SM, de Sousa DP, de Almeida RN (2011) Anxiolytic-like effects of inhaled linalool oxide in experimental mouse anxiety models. Pharmacol Biochem Behav 100:259–263

    CAS  PubMed  Google Scholar 

  • Storch A, Ludolph AC, Schwarz J (2004) Dopamine transporter: involvement in selective dopaminergic neurotoxicity and degeneration. J Neural Transm 111:1267–1286

    CAS  PubMed  Google Scholar 

  • Sugawara Y, Hara C, Tamura K, Fujii T, Nakamura K, Masujima T, Aoki T (1998) Sedative effect on humans of inhalation of essential oil of linalool: sensory evaluation and physiological measurements using optically active linalools. Anal Chim Acta 365:293–299

    CAS  Google Scholar 

  • Sun Y, Sukumaran P, Schaar SBB (2015) TRPM7 and its role in neurodegenerative diseases. Channels. 95:253–261

    Google Scholar 

  • Tabrez S, Jabir NR, Shaki S, Greig NH, Alam Q, Abuzenadah AM et al (2012) A synopsis on the role of tyrosine hydroxylase in Parkinson’s disease. CNS Neurol Disord Drug Targets 11:395–409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JM, Main BS, Crack PJ (2013) Neuroinflammation and oxidative stress: co-conspirators in the pathology of Parkinson’s disease. Neurochem Int 62:803–819

    CAS  PubMed  Google Scholar 

  • Tieu K (2011) A guide to neurotoxic animal models of Parkinson’s disease. Cold Spring Harb Perspect Med 1(1):a009316. https://doi.org/10.1101/cshperspect.a009316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tysnes OB, Storstein A (2017) Epidemiology of Parkinson's disease. J Neural Transm 124:901–905

    PubMed  Google Scholar 

  • Uehleke B, Schaper S, Dienel A, Schlafke S, Stange R (2012) Phase II trial on the effects of silexan in patients with neurasthenia, post-traumatic stress disorder or somatization disorder. Phytomed 19(665–671):2012

    Google Scholar 

  • Wang Z-J, Heinbockel T (2018) Essential oils and their constituents targeting the GABAergic system and sodium channels as treatment of neurological diseases. Molecules 23(5):E1061. https://doi.org/10.3390/molecules23051061

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Wang K, Lu C, Dong L, Gao L, Yan M, Aibai S, Yang Y, Liu X (2017a) Protective effect of linalool against beta-induced cognitive deficits and damages in mice. Life Sci 174:21–27

    CAS  PubMed  Google Scholar 

  • Xu P, Wang K, Lu C, Dong L, Gao L, Yan M, Aibai S, Yang Y, Liu X (2017b) The protective effect of lavender essential oil and its main component linalool against the cognitive deficits induced by d-galactose and aluminum trichloride in mice. Evid Based Complement Alternat Med 2017:7426538. https://doi.org/10.1155/2017/7426538

    Article  PubMed  PubMed Central  Google Scholar 

  • Zalachoras I, Kagiava A, Vokou D, Theophilidis G (2010) Assessing the local anesthetic effect of five essential oil constituents. Planta Med 76:1647–1653

    CAS  PubMed  Google Scholar 

  • Zhu X, Libby RT, de Vries WN, Smith RS, Wright DL, Bronson RT, Seburn KL, John SW (2012) Mutations in a P-type ATPase gene cause axonal degeneration. PLoS Genet 8:e1002853. https://doi.org/10.1371/journal.pgen.1002853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors are grateful to the financial supports of the Brazilian National Research Council (CNPq), Coordination for Improvement of Higher Level Personnel (CAPES), and Foundation for Scientific and Technological Development Support of the State of Ceará (FUNCAP).

Author information

Authors and Affiliations

Authors

Contributions

JDL was responsible for stereotaxic surgeries, treatment of animals, and behavioral tests; CVJG-F helped with the maintenance of animals and behavioral tests; ROC and DPA helped with biochemical measurements; FAVL and KRTN helped with immunohistochemical assays; and GSBV coordinated the study and wrote the manuscript submitted for the approval of all authors.

Corresponding author

Correspondence to Glauce Socorro de Barros Viana.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Experiments were carried out observing the guidelines of the USA National Research Council for care and use of laboratory animals (National Research Council 2011). The experimental procedures and protocols were approved by the Local Ethics Committee of the Faculty of Medicine of the Federal University of Ceará, Fortaleza, Brazil.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lucena, J.D., Gadelha-Filho, C.V.J., da Costa, R.O. et al. L-linalool exerts a neuroprotective action on hemiparkinsonian rats. Naunyn-Schmiedeberg's Arch Pharmacol 393, 1077–1088 (2020). https://doi.org/10.1007/s00210-019-01793-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-019-01793-1

Keywords

Navigation