Skip to main content
Log in

On the Maxwell and Friedrichs/Poincaré constants in ND

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove that for bounded and convex domains in arbitrary dimensions, the Maxwell constants are bounded from below and above by Friedrichs’ and Poincaré’s constants, respectively. Especially, the second positive Maxwell eigenvalues in ND are bounded from below by the square root of the second Neumann-Laplace eigenvalue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21(9), 823–864 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Bao, G., Zhou, Z.: An inverse problem for scattering by a doubly periodic structure. Trans. Am. Math. Soc. 350(10), 4089–4103 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Bauer, S., Pauly, D., Schomburg, M.: The Maxwell compactness property in bounded weak Lipschitz domains with mixed boundary conditions. SIAM J. Math. Anal. 48(4), 2912–2943 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Filonov, N.: On an inequality for the eigenvalues of the Dirichlet and Neumann problems for the Laplace operator. St. Petersburg Math. J. 16(2), 413–416 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Girault, V., Raviart, P.-A.: Finite element methods for Navier–Stokes equations: theory and algorithms. Springer (Series in Computational Mathematics), Heidelberg (1986)

    MATH  Google Scholar 

  6. Gol’dshtein, V., Mitrea, I., Mitrea, M.: Hodge decompositions with mixed boundary conditions and applications to partial differential equations on Lipschitz manifolds. J. Math. Sci. (N. Y.) 172(3), 347–400 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Grisvard, P.: Elliptic problems in nonsmooth domains. Pitman (Advanced Publishing Program), Boston (1985)

    MATH  Google Scholar 

  8. Jakab, T., Mitrea, I., Mitrea, M.: On the regularity of differential forms satisfying mixed boundary conditions in a class of Lipschitz domains. Indiana Univ. Math. J. 58(5), 2043–2071 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Jochmann, F.: A compactness result for vector fields with divergence and curl in \({L}^q({\Omega })\) involving mixed boundary conditions. Appl. Anal. 66, 189–203 (1997)

    MathSciNet  Google Scholar 

  10. Kuhn, P., Pauly, D.: Regularity results for generalized electro-magnetic problems. Analysis (Munich) 30(3), 225–252 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Leis, R.: Zur Theorie elektromagnetischer Schwingungen in anisotropen inhomogenen Medien. Math. Z. 106, 213–224 (1968)

    MathSciNet  Google Scholar 

  12. Leis, R.: Initial boundary value problems in mathematical physics. Teubner, Stuttgart (1986)

    MATH  Google Scholar 

  13. Mitrea, M.: Dirichlet integrals and Gaffney-Friedrichs inequalities in convex domains. Forum Math. 13(4), 531–567 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Pauly, D.: Low frequency asymptotics for time-harmonic generalized Maxwell equations in nonsmooth exterior domains. Adv. Math. Sci. Appl. 16(2), 591–622 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Pauly, D.: Generalized electro-magneto statics in nonsmooth exterior domains. Analysis (Munich) 27(4), 425–464 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Pauly, D.: Complete low frequency asymptotics for time-harmonic generalized Maxwell equations in nonsmooth exterior domains. Asymptot. Anal. 60(3–4), 125–184 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Pauly, D.: Hodge-Helmholtz decompositions of weighted Sobolev spaces in irregular exterior domains with inhomogeneous and anisotropic media. Math. Methods Appl. Sci. 31, 1509–1543 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Pauly, D.: On constants in Maxwell inequalities for bounded and convex domains. Zapiski POMI 435, 46–54 (2014)

    Google Scholar 

  19. Pauly, D.: On constants in Maxwell inequalities for bounded and convex domains. J. Math. Sci. (N. Y.) 210(6), 787–792 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Pauly, D.: On Maxwell’s and Poincaré’s constants. Discrete Contin. Dyn. Syst. Ser. S 8(3), 607–618 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Pauly, D.: On the Maxwell constants in 3D. Math. Methods Appl. Sci. 40(2), 435–447 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Picard, R.: Randwertaufgaben der verallgemeinerten Potentialtheorie. Math. Methods Appl. Sci. 3, 218–228 (1981)

    MathSciNet  MATH  Google Scholar 

  23. Picard, R.: On the boundary value problems of electro- and magnetostatics. Proc. R. Soc. Edinburgh Sect. A 92, 165–174 (1982)

    MathSciNet  MATH  Google Scholar 

  24. Picard, R.: An elementary proof for a compact imbedding result in generalized electromagnetic theory. Math. Z. 187, 151–164 (1984)

    MathSciNet  MATH  Google Scholar 

  25. Picard, R.: Some decomposition theorems and their applications to non-linear potential theory and Hodge theory. Math. Methods Appl. Sci. 12, 35–53 (1990)

    MathSciNet  Google Scholar 

  26. Picard, R., Weck, N., Witsch, K.-J.: Time-harmonic Maxwell equations in the exterior of perfectly conducting, irregular obstacles. Analysis (Munich) 21, 231–263 (2001)

    MathSciNet  MATH  Google Scholar 

  27. Saranen, J.: Über das Verhalten der Lösungen der Maxwellschen Randwertaufgabe in Gebieten mit Kegelspitzen. Math. Methods Appl. Sci. 2(2), 235–250 (1980)

    MathSciNet  MATH  Google Scholar 

  28. Saranen, J.: Über das Verhalten der Lösungen der Maxwellschen Randwertaufgabe in einigen nichtglatten Gebieten. Ann. Acad. Sci. Fenn. Ser. A I Math. 6(1), 15–28 (1981)

    MathSciNet  MATH  Google Scholar 

  29. Saranen, J.: On an inequality of Friedrichs. Math. Scand. 51(2), 310–322 (1982)

    MathSciNet  MATH  Google Scholar 

  30. Weber, C.: A local compactness theorem for Maxwell’s equations. Math. Methods Appl. Sci. 2, 12–25 (1980)

    MathSciNet  MATH  Google Scholar 

  31. Weck, N.: Maxwell’s boundary value problems on Riemannian manifolds with nonsmooth boundaries. J. Math. Anal. Appl. 46, 410–437 (1974)

    MathSciNet  MATH  Google Scholar 

  32. Witsch, K.-J.: A remark on a compactness result in electromagnetic theory. Math. Methods Appl. Sci. 16, 123–129 (1993)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We cordially thank the anonymous referee for a very careful reading and valuable suggestions for improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Pauly.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Lemma 3.2

By the \(*\)-operator it is sufficient to discuss, e.g., \(\omega \in \mathsf {D}^{q}(\Omega )\cap \mathring{\Delta }^{q}(\Omega )\). For a proof we follow the nice book of Grisvard, see [7, Theorem 3.2.1.2, Theorem 3.2.1.3]. This proof has been carried out in [5, Corollary 3.6, Theorem 3.9] and [1, Theorem 2.17] for the Maxwell case and \(N=3\). Our proof will avoid the misleading notion of traces and solutions of second order elliptic systems. Let us note that in [1, p. 834] the proof for \(X_{N}(\Omega )\) is wrong. One cannot work in the space \(V_{T}(\Omega _{k})\) due to the solenoidal condition. Working in the space \(X_{T}(\Omega _{k})\) is needed, but this destroys their argument for the second order elliptic system for \(\zeta \). Our approach corrects these inconsistencies.

Let us pick a sequence of increasing, convex, and \(\overset{}{\mathsf {C}}{}^{\infty }_{}\)-smooth subdomains \((\Omega _{n})\subset \Omega \) converging to \(\Omega \), i.e.,

$$\begin{aligned}\Omega _{n}\subset \overline{\Omega }_{n}\subset \Omega _{n+1}\subset \dots \subset \Omega ,\qquad {{\,\mathrm{dist}\,}}(\Omega ,\Omega _{n})={{\,\mathrm{dist}\,}}(\partial \Omega ,\partial \Omega _{n})\rightarrow 0,\end{aligned}$$

see, e.g., [7, Lemma 3.2.1.1]. Of course, \(\overset{}{\mathsf {C}}{}^{2}_{}\)-smooth is also sufficient. For \(\Omega _{n}\) we find \(\zeta _{n}\in \mathsf {D}^{q-1}(\Omega _{n})\) such that for all \(\varphi \in \mathsf {D}^{q-1}(\Omega _{n})\)

$$\begin{aligned} \langle \zeta _{n},\varphi \rangle _{\mathsf {D}^{q-1}(\Omega _{n})} =\langle \delta \omega ,\varphi \rangle _{\mathsf {L}^{2,q-1}(\Omega _{n})} +\langle \omega ,{{\,\mathrm{d}\,}}\varphi \rangle _{\mathsf {L}^{2,q}(\Omega _{n})}, \end{aligned}$$
(A.1)

which is a trivially well defined problem. Note \(\langle \zeta _{n},\varphi \rangle _{\mathsf {D}^{q-1}(\Omega _{n})} =\langle \zeta _{n},\varphi \rangle _{\mathsf {L}^{2,q-1}(\Omega _{n})} +\langle {{\,\mathrm{d}\,}}\zeta _{n},{{\,\mathrm{d}\,}}\varphi \rangle _{\mathsf {L}^{2,q}(\Omega _{n})}\). Hence

$$\begin{aligned} \langle \omega -{{\,\mathrm{d}\,}}\zeta _{n},{{\,\mathrm{d}\,}}\varphi \rangle _{\mathsf {L}^{2,q}(\Omega _{n})} =\langle \zeta _{n}-\delta \omega ,\varphi \rangle _{\mathsf {L}^{2,q-1}(\Omega _{n})} \end{aligned}$$

for all \(\varphi \in \mathsf {D}^{q-1}(\Omega _{n})\), showing by (2.11) that \(\omega _{n}:=\omega -{{\,\mathrm{d}\,}}\zeta _{n}\in \mathring{\Delta }^{q}(\Omega _{n})\) and \(\delta \omega _{n}=\delta \omega -\zeta _{n}\). Moreover, \(\omega _{n}\in \mathsf {D}^{q}(\Omega _{n})\) with \({{\,\mathrm{d}\,}}\omega _{n}={{\,\mathrm{d}\,}}\omega \). By (1.20) we have \(\omega _{n}\in \mathsf {H}^{1,q+1}(\Omega _{n})\) with

$$\begin{aligned} |\nabla \vec {\omega }_{n}|_{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega _{n})}^2&\le |{{\,\mathrm{d}\,}}\omega _{n}|_{\mathsf {L}^{2,q+1}(\Omega _{n})}^2 +|\delta \omega _{n}|_{\mathsf {L}^{2,q-1}(\Omega _{n})}^2 =|{{\,\mathrm{d}\,}}\omega |_{\mathsf {L}^{2,q+1}(\Omega _{n})}^2 +|\delta \omega -\zeta _{n}|_{\mathsf {L}^{2,q-1}(\Omega _{n})}^2. \end{aligned}$$
(A.2)

By setting \(\varphi =\zeta _{n}\) in (A.1) we see

$$\begin{aligned} |\zeta _{n}|_{\mathsf {D}^{q-1}(\Omega _{n})}^2&=\langle \delta \omega ,\zeta _{n}\rangle _{\mathsf {L}^{2,q-1}(\Omega _{n})} +\langle \omega ,{{\,\mathrm{d}\,}}\zeta _{n}\rangle _{\mathsf {L}^{2,q}(\Omega _{n})}\nonumber \\&\le |\delta \omega |_{\mathsf {L}^{2,q-1}(\Omega _{n})}|\zeta _{n}|_{\mathsf {L}^{2,q-1}(\Omega _{n})} +|\omega |_{\mathsf {L}^{2,q}(\Omega _{n})}|{{\,\mathrm{d}\,}}\zeta _{n}|_{\mathsf {L}^{2,q}(\Omega _{n})}\nonumber \\&\le |\omega |_{\Delta ^{q}(\Omega _{n})}|\zeta _{n}|_{\mathsf {D}^{q-1}(\Omega _{n})} \end{aligned}$$
(A.3)

and thus

$$\begin{aligned} |\zeta _{n}|_{\mathsf {D}^{q-1}(\Omega _{n})}&\le |\omega |_{\Delta ^{q}(\Omega _{n})} \le |\omega |_{\Delta ^{q}(\Omega )}. \end{aligned}$$
(A.4)

Combining (A.2) and the equation part of (A.3) we observe

$$\begin{aligned} |\vec {\omega }_{n}|_{\overset{}{\mathsf {H}}{}^{1}_{}(\Omega _{n})}^2&=|\omega _{n}|_{\mathsf {L}^{2,q}(\Omega _{n})}^2 +|\nabla \vec {\omega }_{n}|_{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega _{n})}^2 \le |\omega _{n}|_{\mathsf {L}^{2,q}(\Omega _{n})}^2 +|{{\,\mathrm{d}\,}}\omega |_{\mathsf {L}^{2,q+1}(\Omega _{n})}^2 \\&\qquad +|\delta \omega -\zeta _{n}|_{\mathsf {L}^{2,q-1}(\Omega _{n})}^2\\&=|\omega |_{\mathsf {L}^{2,q}(\Omega _{n})}^2 +|{{\,\mathrm{d}\,}}\zeta _{n}|_{\mathsf {L}^{2,q}(\Omega _{n})}^2 +|{{\,\mathrm{d}\,}}\omega |_{\mathsf {L}^{2,q+1}(\Omega _{n})}^2 +|\delta \omega |_{\mathsf {L}^{2,q-1}(\Omega _{n})}^2 +|\zeta _{n}|_{\mathsf {L}^{2,q-1}(\Omega _{n})}^2\\&\qquad -2\langle \omega ,{{\,\mathrm{d}\,}}\zeta _{n}\rangle _{\mathsf {L}^{2,q}(\Omega _{n})} -2\langle \delta \omega ,\zeta _{n}\rangle _{\mathsf {L}^{2,q-1}(\Omega _{n})}\\&=|\omega |_{\mathsf {D}^{q}(\Omega _{n})\cap \Delta ^{q}(\Omega _{n})}^2 +|\zeta _{n}|_{\mathsf {D}^{q}(\Omega _{n})}^2 -2|\zeta _{n}|_{\mathsf {D}^{q}(\Omega _{n})}^2 \le |\omega |_{\mathsf {D}^{q}(\Omega _{n})\cap \Delta ^{q}(\Omega _{n})}^2 \end{aligned}$$

and therefore

$$\begin{aligned} \begin{aligned} |\vec {\omega }_{n}|_{\overset{}{\mathsf {H}}{}^{1}_{}(\Omega _{n})} \le |\omega |_{\mathsf {D}^{q}(\Omega _{n})\cap \Delta ^{q}(\Omega _{n})} \le |\omega |_{\mathsf {D}^{q}(\Omega )\cap \Delta ^{q}(\Omega )}. \end{aligned} \end{aligned}$$
(A.5)

Let us denote the extension by zero to \(\Omega \) by \(\tilde{\cdot }\). Then by (A.4) and (A.5) the sequences \((\tilde{\zeta }_{n})\), \((\widetilde{{{\,\mathrm{d}\,}}\zeta }_{n})\), and \((\tilde{\vec {\omega }}_{n})\), \((\widetilde{\nabla \vec {\omega }}_{n})\) are bounded in \(\mathsf {L}^{2,q-1}(\Omega )\), \(\mathsf {L}^{2,q}(\Omega )\), resp. \(\overset{}{\mathsf {L}}{}^{2}_{}(\Omega )\) and we can extract weakly converging subsequences, again denoted by the index n, such that

Let \(\psi \in \mathring{\mathsf {C}}^{\infty }(\Omega )\) and n be large enough such that \({{\,\mathrm{supp}\,}}\psi \subset \Omega _{n}\). Then \(\psi \in \mathring{\mathsf {C}}^{\infty }(\Omega _{n})\) and we calculate for \(i=1,\dots ,N\) and the \(\ell \)-th component \(\vec {\hat{\omega }}_{\ell }\) of \(\vec {\hat{\omega }}\)

$$\begin{aligned}&\langle \vec {\hat{\omega }}_{\ell },\partial _{i}\psi \rangle _{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega )} \leftarrow \langle \tilde{\vec {\omega }}_{n,\ell },\partial _{i}\psi \rangle _{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega )} =\langle \vec {\omega }_{n,\ell },\partial _{i}\psi \rangle _{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega _{n})}\\&\quad =-\langle \partial _{i}\vec {\omega }_{n,\ell },\psi \rangle _{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega _{n})} =-\langle \widetilde{\partial _{i}\vec {\omega }}_{n,\ell },\psi \rangle _{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega )}\rightarrow -\langle \hat{\Theta }_{i,\ell },\psi \rangle _{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega )}, \end{aligned}$$

yielding \(\vec {\hat{\omega }}\in \overset{}{\mathsf {H}}{}^{1}_{}(\Omega )\) and \(\nabla \vec {\hat{\omega }}=\hat{\Theta }\). Analogously we obtain for \(\phi \in \mathring{\mathsf {C}}^{\infty ,q}(\Omega )\) with \(\phi \in \mathring{\mathsf {C}}^{\infty ,q}(\Omega _{n})\) for n large enough

$$\begin{aligned}&\langle \zeta ,\delta \phi \rangle _{\mathsf {L}^{2,q-1}(\Omega )} \leftarrow \langle \tilde{\zeta }_{n},\delta \phi \rangle _{\mathsf {L}^{2,q-1}(\Omega )} =\langle \zeta _{n},\delta \phi \rangle _{\mathsf {L}^{2,q-1}(\Omega _{n})}\\&\quad =-\langle {{\,\mathrm{d}\,}}\zeta _{n},\phi \rangle _{\mathsf {L}^{2,q}(\Omega _{n})} =-\langle \widetilde{{{\,\mathrm{d}\,}}\zeta }_{n},\phi \rangle _{\mathsf {L}^{2,q}(\Omega )} \rightarrow -\langle \xi ,\phi \rangle _{\mathsf {L}^{2,q}(\Omega )}, \end{aligned}$$

showing \(\zeta \in \mathsf {D}^{q-1}(\Omega )\) and \({{\,\mathrm{d}\,}}\zeta =\xi \). Moreover, for \(\varphi \in \mathsf {D}^{q-1}(\Omega )\subset \mathsf {D}^{q-1}(\Omega _{n})\) we have by (A.1)

$$\begin{aligned}&\langle \zeta ,\varphi \rangle _{\mathsf {D}^{q-1}(\Omega )}\\&\quad =\langle \zeta ,\varphi \rangle _{\mathsf {L}^{2,q-1}(\Omega )} +\langle {{\,\mathrm{d}\,}}\zeta ,{{\,\mathrm{d}\,}}\varphi \rangle _{\mathsf {L}^{2,q}(\Omega )} \leftarrow \langle \tilde{\zeta }_{n},\varphi \rangle _{\mathsf {L}^{2,q-1}(\Omega )} +\langle \widetilde{{{\,\mathrm{d}\,}}\zeta }_{n},{{\,\mathrm{d}\,}}\varphi \rangle _{\mathsf {L}^{2,q}(\Omega )}\\&\quad =\langle \zeta _{n},\varphi \rangle _{\mathsf {D}^{q-1}(\Omega _{n})}=\langle \delta \omega ,\varphi \rangle _{\mathsf {L}^{2,q-1}(\Omega _{n})} +\langle \omega ,{{\,\mathrm{d}\,}}\varphi \rangle _{\mathsf {L}^{2,q}(\Omega _{n})}\\&\quad \rightarrow \langle \delta \omega ,\varphi \rangle _{\mathsf {L}^{2,q-1}(\Omega )} +\langle \omega ,{{\,\mathrm{d}\,}}\varphi \rangle _{\mathsf {L}^{2,q}(\Omega )} =0, \end{aligned}$$

as \(\omega \in \mathring{\Delta }^{q}(\Omega )\), where the last convergence follows by Lebesgue’s dominated convergence theorem. For \(\varphi =\zeta \) we get \(|\zeta |_{\mathsf {D}^{q-1}(\Omega )}=0\), i.e., \(\zeta =0\). Furthermore, we observe by (A.5)

$$\begin{aligned} |\vec {\hat{\omega }}|_{\overset{}{\mathsf {H}}{}^{1}_{}(\Omega )}^2&=\langle \vec {\hat{\omega }},\vec {\hat{\omega }}\rangle _{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega )} +\langle \nabla \vec {\hat{\omega }},\nabla \vec {\hat{\omega }}\rangle _{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega )} \leftarrow \langle \vec {\hat{\omega }},\tilde{\vec {\omega }}_{n}\rangle _{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega )} +\langle \nabla \vec {\hat{\omega }},\widetilde{\nabla \vec {\omega }}_{n}\rangle _{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega )}\\&=\langle \vec {\hat{\omega }},\vec {\omega }_{n}\rangle _{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega _{n})} +\langle \nabla \vec {\hat{\omega }},\nabla \vec {\omega }_{n}\rangle _{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega _{n})} \le |\vec {\hat{\omega }}|_{\overset{}{\mathsf {H}}{}^{1}_{}(\Omega _{n})} |\vec {\omega }_{n}|_{\overset{}{\mathsf {H}}{}^{1}_{}(\Omega _{n})}\\&\le |\vec {\hat{\omega }}|_{\overset{}{\mathsf {H}}{}^{1}_{}(\Omega )} |\omega |_{\mathsf {D}^{q}(\Omega )\cap \Delta ^{q}(\Omega )}, \end{aligned}$$

showing

$$\begin{aligned} |\vec {\hat{\omega }}|_{\overset{}{\mathsf {H}}{}^{1}_{}(\Omega )} \le |\omega |_{\mathsf {D}^{q}(\Omega )\cap \Delta ^{q}(\Omega )}. \end{aligned}$$
(A.6)

Finally, we have \(\omega =\omega _{n}+{{\,\mathrm{d}\,}}\zeta _{n}\) in \(\Omega _{n}\), i.e., in \(\Omega \)

On the other hand, by Lebesgue’s dominated convergence theorem we see \(\chi _{\Omega _{n}}\omega \rightarrow \omega \) in \(\mathsf {L}^{2,q}(\Omega )\). Thus \(\omega =\hat{\omega }\in \mathsf {H}^{1,q}(\Omega )\) and by (A.6)

$$\begin{aligned} |\omega |_{\mathsf {H}^{1,q}(\Omega )}&=|\vec {\hat{\omega }}|_{\overset{}{\mathsf {H}}{}^{1}_{}(\Omega )} \le |\omega |_{\mathsf {D}^{q}(\Omega )\cap \Delta ^{q}(\Omega )}, \end{aligned}$$

especially,

$$\begin{aligned} |\nabla \vec \omega |_{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega )}^2&\le |{{\,\mathrm{d}\,}}\omega |_{\mathsf {L}^{2,q+1}(\Omega )}^2 +|\delta \omega |_{\mathsf {L}^{2,q-1}(\Omega )}^2. \end{aligned}$$

Appendix B: Calculations for Remark 3.12

For a multi index I of length \(|I|=q\) (not necessarily ordered) it holds

$$\begin{aligned} \Phi ^{*}{{\,\mathrm{d}\,}}x^{I}&=\Phi ^{*}({{\,\mathrm{d}\,}}x^{i_{1}}\wedge \dots \wedge {{\,\mathrm{d}\,}}x^{i_{q}}) =(\Phi ^{*}{{\,\mathrm{d}\,}}x^{i_{1}})\wedge \dots \wedge (\Phi ^{*}{{\,\mathrm{d}\,}}x^{i_{q}}) \\&=({{\,\mathrm{d}\,}}\Phi _{i_{1}})\wedge \dots \wedge ({{\,\mathrm{d}\,}}\Phi _{i_{q}}) = {{\,\mathrm{d}\,}}\Phi ^{I} \\&=\sum _{j_{1},\dots ,j_{q}}\partial _{j_{1}}\Phi _{i_{1}}\dots \partial _{j_{q}}\Phi _{i_{q}} {{\,\mathrm{d}\,}}x^{j_{1}}\wedge \dots \wedge {{\,\mathrm{d}\,}}x^{j_{q}} =\sum _{|J|=q}\partial _{J}\Phi _{I}{{\,\mathrm{d}\,}}x^{J} \end{aligned}$$

and especially

$$\begin{aligned}\Phi ^{*}({{\,\mathrm{d}\,}}x^{1}\wedge \dots \wedge {{\,\mathrm{d}\,}}x^{N}) =\det (\nabla \Phi ){{\,\mathrm{d}\,}}x^{1}\wedge \dots \wedge {{\,\mathrm{d}\,}}x^{N}.\end{aligned}$$

For multi indices IJ of length q we have

$$\begin{aligned} (\Phi ^{*}{{\,\mathrm{d}\,}}x^{I})\wedge *(\Phi ^{*}{{\,\mathrm{d}\,}}x^{J})&=\sum _{|K|=|L|=q}\partial _{K}\Phi _{I}\partial _{L}\Phi _{J}{{\,\mathrm{d}\,}}x^{K}\wedge *{{\,\mathrm{d}\,}}x^{L}\\&=\sum _{|K|=q}(-1)^{\sigma _{K}}\partial _{K}\Phi _{I}\partial _{K}\Phi _{J}{{\,\mathrm{d}\,}}x^{1}\wedge \dots \wedge {{\,\mathrm{d}\,}}x^{N}. \end{aligned}$$

Hence for

$$\begin{aligned}\omega =\sum _{I}\omega _{I}{{\,\mathrm{d}\,}}x^{I},\quad \Phi ^{*}\omega =\sum _{I}\tilde{\omega }_{I}\,\Phi ^{*}{{\,\mathrm{d}\,}}x^{I},\quad \tilde{\omega }:=\sum _{I}\tilde{\omega }_{I}{{\,\mathrm{d}\,}}x^{I},\qquad \tilde{\omega }_{I}:=\omega _{I}\circ \Phi \end{aligned}$$

we compute

$$\begin{aligned} *\,|\omega |^2 =\omega \wedge *\,\bar{\omega }&=\sum _{I,J}\omega _{I}\bar{\omega }_{J}{{\,\mathrm{d}\,}}x^{I}\wedge *{{\,\mathrm{d}\,}}x^{J} =\sum _{I}\omega _{I}\bar{\omega }_{I}{{\,\mathrm{d}\,}}x^{I}\wedge *{{\,\mathrm{d}\,}}x^{I}\\&=|\vec \omega |^2{{\,\mathrm{d}\,}}x^{1}\wedge \dots \wedge {{\,\mathrm{d}\,}}x^{N},\\ *\,|\Phi ^{*}\omega |^2 =\Phi ^{*}\omega \wedge *\,\Phi ^{*}\bar{\omega }&=\sum _{I,J}\tilde{\omega }_{I}\bar{\tilde{\omega }}_{J}(\Phi ^{*}{{\,\mathrm{d}\,}}x^{I})\wedge *(\Phi ^{*}{{\,\mathrm{d}\,}}x^{J})\\&=\sum _{I,J}\sum _{|K|=q}(-1)^{\sigma _{K}}\tilde{\omega }_{I}\bar{\tilde{\omega }}_{J} \partial _{K}\Phi _{I}\partial _{K}\Phi _{J}{{\,\mathrm{d}\,}}x^{1}\wedge \dots \wedge {{\,\mathrm{d}\,}}x^{N}, \end{aligned}$$

and thus

$$\begin{aligned} |\vec \omega |_{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega )}^2&=|\omega |_{\mathsf {L}^{2,q}(\Omega )}^2 =\int _{\Omega }*\,|\omega |^2 =\int _{\Omega }|\vec \omega |^2{{\,\mathrm{d}\,}}x^{1}\wedge \dots \wedge {{\,\mathrm{d}\,}}x^{N}\\&=\int _{\Xi }|\vec {\tilde{\omega }}|^2\Phi ^{*}({{\,\mathrm{d}\,}}x^{1}\wedge \dots \wedge {{\,\mathrm{d}\,}}x^{N})\\&=\int _{\Xi }\det (\nabla \Phi )|\vec {\tilde{\omega }}|^2{{\,\mathrm{d}\,}}x^{1}\wedge \dots \wedge {{\,\mathrm{d}\,}}x^{N} =\int _{\Xi }\det (\nabla \Phi )*|\tilde{\omega }|^2 =\int _{\Xi }\det (\nabla \Phi )|\vec {\tilde{\omega }}|^2,\\ |\overrightarrow{\Phi ^{*}\omega }|_{\overset{}{\mathsf {L}}{}^{2}_{}(\Xi )}^2&=|\Phi ^{*}\omega |_{\mathsf {L}^{2,q}(\Xi )}^2 =\int _{\Xi }*\,|\Phi ^{*}\omega |^2\\&=\sum _{I,J}\sum _{|K|=q}(-1)^{\sigma _{K}} \int _{\Xi }\tilde{\omega }_{I}\bar{\tilde{\omega }}_{J} \partial _{K}\Phi _{I}\partial _{K}\Phi _{J}{{\,\mathrm{d}\,}}x^{1}\wedge \dots \wedge {{\,\mathrm{d}\,}}x^{N}\\&=\sum _{I,J}\sum _{|K|=q}(-1)^{\sigma _{K}} \int _{\Xi }\tilde{\omega }_{I}\bar{\tilde{\omega }}_{J}\partial _{K}\Phi _{I}\partial _{K}\Phi _{J}. \end{aligned}$$

Therefore, we get

$$\begin{aligned} \min _{\Xi }\det (\nabla \Phi )\, |\tilde{\omega }|_{\mathsf {L}^{2,q}(\Xi )}^2 \le |\omega |_{\mathsf {L}^{2,q}(\Omega )}^2&\le \max _{\Xi }\det (\nabla \Phi )\, |\tilde{\omega }|_{\mathsf {L}^{2,q}(\Xi )}^2,\\ |\Phi ^{*}\omega |_{\mathsf {L}^{2,q}(\Xi )}^2&\le N^{q}\left( {\begin{array}{c}N\\ q\end{array}}\right) ^{2} \max _{\Xi }|\nabla \Phi |^{2q}\, |\tilde{\omega }|_{\mathsf {L}^{2,q}(\Xi )}^2, \end{aligned}$$

where the second estimate is quite rough. Combing both we see

$$\begin{aligned} |\Phi ^{*}\omega |_{\mathsf {L}^{2,q}(\Xi )}^2&\le c_{q,N,\nabla \Phi }|\omega |_{\mathsf {L}^{2,q}(\Omega )}^2,&c_{q,N,\nabla \Phi }&:=N^{q}\left( {\begin{array}{c}N\\ q\end{array}}\right) ^{2}\frac{\max _{\Xi }|\nabla \Phi |^{2q}}{\min _{\Xi }\det (\nabla \Phi )}, \end{aligned}$$
(B.1)
$$\begin{aligned} |\Psi ^{*}\zeta |_{\mathsf {L}^{2,q}(\Omega )}^2&\le c_{q,N,\nabla \Psi }|\zeta |_{\mathsf {L}^{2,q}(\Xi )}^2,&c_{q,N,\nabla \Psi }&:=N^{q}\left( {\begin{array}{c}N\\ q\end{array}}\right) ^{2}\frac{\max _{\Omega }|\nabla \Psi |^{2q}}{\min _{\Omega }\det (\nabla \Psi )} \end{aligned}$$
(B.2)

and with \(\omega =\Psi ^{*}\Phi ^{*}\omega \)

$$\begin{aligned} |\omega |_{\mathsf {L}^{2,q}(\Omega )}^2 \le c_{q,N,\nabla \Psi } |\Phi ^{*}\omega |_{\mathsf {L}^{2,q}(\Xi )}^2,\qquad |\zeta |_{\mathsf {L}^{2,q}(\Xi )}^2 \le c_{q,N,\nabla \Phi }|\Psi ^{*}\zeta |_{\mathsf {L}^{2,q}(\Omega )}^2. \end{aligned}$$

Now we calculate by Theorem 3.6

$$\begin{aligned} \begin{aligned} |\omega |_{\mathsf {L}^{2,q}(\Omega )}^2&\le c_{q,N,\nabla \Psi }|\Phi ^{*}\omega |_{\mathsf {L}^{2,q}(\Xi )}^2 \le c_{q,N,\nabla \Psi }c_{\mathsf {p},\Xi }^2\,\hat{\mu }^2 \big (|{{\,\mathrm{\mathring{{{\,\mathrm{d}\,}}}}\,}}\Phi ^{*}\omega |_{\mathsf {L}^{2,q+1}(\Xi )}^2 +|\delta \mu \Phi ^{*}\omega |_{\mathsf {L}^{2,q-1}(\Xi )}^2\big )\\&=c_{q,N,\nabla \Psi }c_{\mathsf {p},\Xi }^2\,\hat{\mu }^2 \big (|\Phi ^{*}{{\,\mathrm{\mathring{{{\,\mathrm{d}\,}}}}\,}}\omega |_{\mathsf {L}^{2,q+1}(\Xi )}^2 +|\Phi ^{*}*\delta \epsilon \,\omega |_{\mathsf {L}^{2,N-q+1}(\Xi )}^2\big )\\&\le c_{q,N,\nabla \Psi }c_{\mathsf {p},\Xi }^2\,\hat{\mu }^2 \big (c_{q+1,N,\nabla \Phi }|{{\,\mathrm{\mathring{{{\,\mathrm{d}\,}}}}\,}}\omega |_{\mathsf {L}^{2,q+1}(\Omega )}^2 +c_{N-q+1,N,\nabla \Phi }|\delta \epsilon \,\omega |_{\mathsf {L}^{2,q-1}(\Omega )}^2\big )\\&\le c_{q,N,\nabla \Psi }\max \{c_{q+1,N,\nabla \Phi },c_{N-q+1,N,\nabla \Phi }\}c_{\mathsf {p},\Xi }^2\,\hat{\mu }^2 \big (|{{\,\mathrm{\mathring{{{\,\mathrm{d}\,}}}}\,}}\omega |_{\mathsf {L}^{2,q+1}(\Omega )}^2 +|\delta \epsilon \,\omega |_{\mathsf {L}^{2,q-1}(\Omega )}^2\big )\\&\le c_{N}^4c_{\nabla \Phi ,\nabla \Psi }^4\,\hat{\mu }^2c_{\mathsf {p},\Xi }^2 \big (|{{\,\mathrm{\mathring{{{\,\mathrm{d}\,}}}}\,}}\omega |_{\mathsf {L}^{2,q+1}(\Omega )}^2 +|\delta \epsilon \,\omega |_{\mathsf {L}^{2,q-1}(\Omega )}^2\big ), \end{aligned} \end{aligned}$$
(B.3)

i.e.,

$$\begin{aligned}c_{\mathsf {t},q,\epsilon }\le c_{N}^2c_{\nabla \Phi ,\nabla \Psi }^2\,\hat{\mu }\,c_{\mathsf {p},\Xi },\end{aligned}$$

with very rough constants

$$\begin{aligned} c_{N}:=N^{\nicefrac {N}{2}}N!,\qquad c_{\nabla \Phi ,\nabla \Psi }:= \frac{\max \big [\max _{\Xi }|\nabla \Phi |,\max _{\Omega }|\nabla \Psi |,1\big ]^{N}}{\min \big [\min _{\Xi }\sqrt{\det (\nabla \Phi )},\min _{\Omega }\sqrt{\det (\nabla \Psi )},1\big ]}. \end{aligned}$$
(B.4)

So, it remains to estimate \(\hat{\mu }\). For this we estimate for \(\Phi ^{*}\omega \in \mathsf {L}^{2,q}(\Xi )\)

$$\begin{aligned} \langle \mu \,\Phi ^{*}\omega ,\Phi ^{*}\omega \rangle _{\mathsf {L}^{2,q}(\Xi )}&=\pm \langle *\,\Phi ^{*}*\epsilon \,\omega ,\Phi ^{*}\omega \rangle _{\mathsf {L}^{2,q}(\Xi )} =\pm \langle \Phi ^{*}*\epsilon \,\omega ,*\,\Phi ^{*}\omega \rangle _{\mathsf {L}^{2,N-q}(\Xi )}\\&=\pm \int _{\Xi }(\Phi ^{*}*\epsilon \,\omega )\wedge (\Phi ^{*}\bar{\omega })\\&=\pm \int _{\Omega }*\,\epsilon \,\omega \wedge \bar{\omega } =\langle \epsilon \,\omega ,\omega \rangle _{\mathsf {L}^{2,q}(\Omega )} \le \overline{\epsilon }^2|\omega |_{\mathsf {L}^{2,q}(\Omega )}^2\\&\le \overline{\epsilon }^2c_{q,N,\nabla \Psi }|\Phi ^{*}\omega |_{\mathsf {L}^{2,q}(\Xi )}^2,\\ \langle \mu \,\Phi ^{*}\omega ,\Phi ^{*}\omega \rangle _{\mathsf {L}^{2,q}(\Xi )}&=\langle \epsilon \,\omega ,\omega \rangle _{\mathsf {L}^{2,q}(\Omega )} \ge \underline{\epsilon }^{-2}|\omega |_{\mathsf {L}^{2,q}(\Omega )}^2\\&\ge \frac{1}{\underline{\epsilon }^2c_{q,N,\nabla \Phi }}|\Phi ^{*}\omega |_{\mathsf {L}^{2,q}(\Xi )}^2, \end{aligned}$$

and observe

$$\begin{aligned}\hat{\mu } \le \max \{\overline{\epsilon }\sqrt{c_{q,N,\nabla \Psi }},\underline{\epsilon }\sqrt{c_{q,N,\nabla \Phi }}\} \le \hat{\epsilon }\max \{\sqrt{c_{q,N,\nabla \Psi }},\sqrt{c_{q,N,\nabla \Phi }}\} \le \hat{\epsilon }\,c_{N}\,c_{\nabla \Phi ,\nabla \Psi }.\end{aligned}$$

Finally, this shows

$$\begin{aligned}c_{\mathsf {t},q,\epsilon }\le c_{N}^3c_{\nabla \Phi ,\nabla \Psi }^3\,\hat{\epsilon }\,c_{\mathsf {p},\Xi }.\end{aligned}$$

1.1 B.1. Classical vector analysis

Some of the latter estimates are very rough. Let us take a closer look at the classical case of vector analysis, i.e., at the special case of \(N=3\) and \(q=1\). By (3.3), see also Appendix C for more details and a rigorous proof, we know that \(\omega \) in \(\mathsf {D}^{q}(\Omega )\) resp. \(\mathring{\mathsf {D}}^{q}(\Omega )\) implies \(\Phi ^{*}\omega \) in \(\mathsf {D}^{q}(\Xi )\) resp. \(\mathring{\mathsf {D}}^{q}(\Xi )\) with \({{\,\mathrm{d}\,}}\Phi ^{*}\omega =\Phi ^{*}{{\,\mathrm{d}\,}}\omega \). For \(N=3\) and \(q=1\) this means for the vector proxy field \(\vec \omega \in \mathring{\mathsf {H}}({{\,\mathrm{curl}\,}},\Omega )\cong \mathring{\mathsf {D}}^{1}(\Omega )\) that

$$\begin{aligned}\overrightarrow{\Phi ^{*}\omega }=\nabla \Phi \,\vec {\tilde{\omega }}\in \mathring{\mathsf {H}}({{\,\mathrm{curl}\,}},\Xi )\cong \mathring{\mathsf {D}}^{1}(\Xi )\end{aligned}$$

with

$$\begin{aligned} {{\,\mathrm{curl}\,}}(\nabla \Phi \,\vec {\tilde{\omega }}) =\overrightarrow{{{\,\mathrm{d}\,}}\Phi ^{*}\omega } =\overrightarrow{\Phi ^{*}{{\,\mathrm{d}\,}}\omega } ={{\,\mathrm{{{\,\mathrm{adj}\,}}^{\top }}\,}}(\nabla \Phi )\widetilde{{{\,\mathrm{curl}\,}}\vec \omega }, \end{aligned}$$
(B.5)

where \({{\,\mathrm{adj}\,}}(A)\) denotes the adjunct matrix of \(A\in \mathbb {R}^{3\times 3}\). If A is invertible it holds \({{\,\mathrm{adj}\,}}(A)=(\det A)A^{-1}\). For \(q=N-1=2\) we have for the vector proxy field \(\vec \omega \in \mathsf {H}({{\,\mathrm{div}\,}},\Omega )\cong \mathsf {D}^{2}(\Omega )\) that

$$\begin{aligned}\overrightarrow{\Phi ^{*}\omega } ={{\,\mathrm{{{\,\mathrm{adj}\,}}^{\top }}\,}}(\nabla \Phi )\,\vec {\tilde{\omega }}\in \mathsf {H}({{\,\mathrm{div}\,}},\Xi )\cong \mathsf {D}^{2}(\Xi )\end{aligned}$$

with

$$\begin{aligned}{{\,\mathrm{div}\,}}\big ({{\,\mathrm{{{\,\mathrm{adj}\,}}^{\top }}\,}}(\nabla \Phi )\,\vec {\tilde{\omega }}\big ) =\overrightarrow{{{\,\mathrm{d}\,}}\Phi ^{*}\omega } =\overrightarrow{\Phi ^{*}{{\,\mathrm{d}\,}}\omega } =\det (\nabla \Phi )\widetilde{{{\,\mathrm{div}\,}}\vec \omega }.\end{aligned}$$

Thus for \(\vec \omega \in \mathring{\mathsf {H}}({{\,\mathrm{curl}\,}},\Omega )\cap \epsilon ^{-1}\mathsf {H}({{\,\mathrm{div}\,}},\Omega )\) we have

$$\begin{aligned}\nabla \Phi \,\vec {\tilde{\omega }}\in \mathring{\mathsf {H}}({{\,\mathrm{curl}\,}},\Xi )\cap \mu ^{-1}\mathsf {H}({{\,\mathrm{div}\,}},\Xi ),\qquad \mu :=\frac{1}{\det (\nabla \Phi )}{{\,\mathrm{{{\,\mathrm{adj}\,}}^{\top }}\,}}(\nabla \Phi )\,\tilde{\epsilon }\,{{\,\mathrm{adj}\,}}(\nabla \Phi ),\end{aligned}$$

with (B.5) and

$$\begin{aligned} {{\,\mathrm{div}\,}}(\mu \nabla \Phi \,\vec {\tilde{\omega }})&={{\,\mathrm{div}\,}}\big ({{\,\mathrm{{{\,\mathrm{adj}\,}}^{\top }}\,}}(\nabla \Phi )\,\tilde{\epsilon }\,\vec {\tilde{\omega }}\big ) =\det (\nabla \Phi )\widetilde{{{\,\mathrm{div}\,}}\epsilon \,\vec \omega }. \end{aligned}$$

Now we can compute (B.3) more carefully by

$$\begin{aligned} |\vec \omega |_{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega )}^2&=\int _{\Omega }|\vec \omega |^2 =\int _{\Xi }\det (\nabla \Phi )|\vec {\tilde{\omega }}|^2 \le \int _{\Xi }\det (\nabla \Phi )\big |(\nabla \Phi )^{-1}\big |^2|\nabla \Phi \,\vec {\tilde{\omega }}|^2\nonumber \\&=\int _{\Xi }\frac{1}{\det (\nabla \Phi )}\big |{{\,\mathrm{adj}\,}}(\nabla \Phi )\big |^2|\nabla \Phi \,\vec {\tilde{\omega }}|^2 \le \hat{c}_{\nabla \Phi }^2|\nabla \Phi \,\vec {\tilde{\omega }}|_{\overset{}{\mathsf {L}}{}^{2}_{}(\Xi )}^2\nonumber \\&\le \hat{c}_{\nabla \Phi }^2c_{\mathsf {m,t},\mu ,\Xi }^2 \bigg (\big |{{\,\mathrm{curl}\,}}(\nabla \Phi \,\vec {\tilde{\omega }})\big |_{\overset{}{\mathsf {L}}{}^{2}_{}(\Xi )}^2 +\big |{{\,\mathrm{div}\,}}(\mu \nabla \Phi \,\vec {\tilde{\omega }})\big |_{\overset{}{\mathsf {L}}{}^{2}_{}(\Xi )}^2\bigg )\nonumber \\&=\hat{c}_{\nabla \Phi }^2c_{\mathsf {m,t},\mu ,\Xi }^2 \bigg (\big |{{\,\mathrm{{{\,\mathrm{adj}\,}}^{\top }}\,}}(\nabla \Phi )\widetilde{{{\,\mathrm{curl}\,}}\vec \omega }\big |_{\overset{}{\mathsf {L}}{}^{2}_{}(\Xi )}^2 +\big |\det (\nabla \Phi )\widetilde{{{\,\mathrm{div}\,}}\epsilon \,\vec \omega }\big |_{\overset{}{\mathsf {L}}{}^{2}_{}(\Xi )}^2\bigg )\nonumber \\&=\hat{c}_{\nabla \Phi }^2c_{\mathsf {m,t},\mu ,\Xi }^2 \bigg (\int _{\Xi }\big |{{\,\mathrm{{{\,\mathrm{adj}\,}}^{\top }}\,}}(\nabla \Phi )\widetilde{{{\,\mathrm{curl}\,}}\vec \omega }\big |^2 +\int _{\Xi }\big |\det (\nabla \Phi )\widetilde{{{\,\mathrm{div}\,}}\epsilon \,\vec \omega }\big |^2\bigg )\nonumber \\&\le \hat{c}_{\nabla \Phi }^2c_{\mathsf {m,t},\mu ,\Xi }^2 \bigg (\hat{c}_{\nabla \Phi }^2\int _{\Xi }\det (\nabla \Phi )|\widetilde{{{\,\mathrm{curl}\,}}\vec \omega }|^2 +c_{\det (\nabla \Phi )}^2\int _{\Xi }\det (\nabla \Phi )|\widetilde{{{\,\mathrm{div}\,}}\epsilon \,\vec \omega }|^2\bigg )\nonumber \\&=\hat{c}_{\nabla \Phi }^2c_{\mathsf {m,t},\mu ,\Xi }^2 \bigg (\hat{c}_{\nabla \Phi }^2|{{\,\mathrm{curl}\,}}\vec \omega |_{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega )}^2 +c_{\det (\nabla \Phi )}^2|{{\,\mathrm{div}\,}}\epsilon \,\vec \omega |_{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega )}^2\bigg ), \end{aligned}$$
(B.6)

where

$$\begin{aligned} c_{\det (\nabla \Phi )}&:=\max _{\Xi }\sqrt{\det (\nabla \Phi )},\\ \hat{c}_{\nabla \Phi }&:=\max _{\Xi }\frac{\big |{{\,\mathrm{adj}\,}}(\nabla \Phi )\big |}{\sqrt{\det (\nabla \Phi )}} =\max _{\Xi }\sqrt{\det (\nabla \Phi )}\big |(\nabla \Phi )^{-1}\big | \le c_{\det (\nabla \Phi )}\max _{\Xi }\big |(\nabla \Phi )^{-1}\big |. \end{aligned}$$

Therefore, we have

$$\begin{aligned}c_{\mathsf {m,t},\epsilon }\le \hat{c}_{\nabla \Phi } \max \{\hat{c}_{\nabla \Phi },c_{\det (\nabla \Phi )}\} c_{\mathsf {m,t},\mu ,\Xi },\qquad c_{\mathsf {m,t},\mu ,\Xi } \le \hat{\mu }\,c_{\mathsf {p},\Xi },\end{aligned}$$

and it remains to estimate \(\hat{\mu }\). For this we compute for \(\vec {\tilde{\omega }}\in \overset{}{\mathsf {L}}{}^{2}_{}(\Xi )\)

$$\begin{aligned} \langle \mu \,\vec {\tilde{\omega }},\vec {\tilde{\omega }}\rangle _{\overset{}{\mathsf {L}}{}^{2}_{}(\Xi )}&=\int _{\Xi }\mu \,\vec {\tilde{\omega }}\cdot \vec {\bar{\tilde{\omega }}} =\int _{\Xi }\det (\nabla \Phi )\big ((\nabla \Phi )^{-\top }\tilde{\epsilon }\,(\nabla \Phi )^{-1}\vec {\tilde{\omega }}\big )\cdot \vec {\bar{\tilde{\omega }}}\\&=\int _{\Xi }\det (\nabla \Phi )\big (\tilde{\epsilon }\,(\nabla \Phi )^{-1}\vec {\tilde{\omega }}\big )\cdot (\nabla \Phi )^{-1}\vec {\bar{\tilde{\omega }}}\\&=\int _{\Omega }(\epsilon \nabla \Psi \,\vec \omega )\cdot \nabla \Psi \,\vec {\bar{\omega }} =\langle \epsilon \nabla \Psi \,\vec \omega ,\nabla \Psi \,\vec \omega \rangle _{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega )} \end{aligned}$$

and estimate

$$\begin{aligned} \langle \mu \,\vec {\tilde{\omega }},\vec {\tilde{\omega }}\rangle _{\overset{}{\mathsf {L}}{}^{2}_{}(\Xi )}&\le \overline{\epsilon }^2|\nabla \Psi \,\vec \omega |_{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega )}^2 =\overline{\epsilon }^2\int _{\Omega }|\nabla \Psi \,\vec \omega |^2 =\overline{\epsilon }^2\int _{\Xi }\det (\nabla \Phi )|(\nabla \Phi )^{-1}\vec {\tilde{\omega }}|^2\\&\le \overline{\epsilon }^2\int _{\Xi }\det (\nabla \Phi )|(\nabla \Phi )^{-1}|^2|\vec {\tilde{\omega }}|^2 \le \overline{\epsilon }^2\hat{c}_{\nabla \Phi }^2\int _{\Xi }|\vec {\tilde{\omega }}|^2 =\overline{\epsilon }^2\hat{c}_{\nabla \Phi }^2|\vec {\tilde{\omega }}|_{\overset{}{\mathsf {L}}{}^{2}_{}(\Xi )}^2,\\ \langle \mu \,\vec {\tilde{\omega }},\vec {\tilde{\omega }}\rangle _{\overset{}{\mathsf {L}}{}^{2}_{}(\Xi )}&\ge \underline{\epsilon }^{-2}|\nabla \Psi \,\vec \omega |_{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega )}^2 =\underline{\epsilon }^{-2}\int _{\Xi }\det (\nabla \Phi )|(\nabla \Phi )^{-1}\vec {\tilde{\omega }}|^2\\&\ge \underline{\epsilon }^{-2}\int _{\Xi }\frac{\det (\nabla \Phi )}{|\nabla \Phi |^{2}}|\vec {\tilde{\omega }}|^2 \ge \underline{\epsilon }^{-2}\check{c}_{\nabla \Phi }^{-2}\int _{\Xi }|\vec {\tilde{\omega }}|^2 =\frac{1}{\underline{\epsilon }^2\check{c}_{\nabla \Phi }^2}|\vec {\tilde{\omega }}|_{\overset{}{\mathsf {L}}{}^{2}_{}(\Xi )}^2, \end{aligned}$$

where

$$\begin{aligned} \check{c}_{\nabla \Phi }&:=\max _{\Xi }\frac{|\nabla \Phi |}{\sqrt{\det (\nabla \Phi )}} =\frac{1}{\min _{\Xi }\frac{\sqrt{\det (\nabla \Phi )}}{|\nabla \Phi |}}. \end{aligned}$$

Finally, we obtain

$$\begin{aligned}\hat{\mu } \le \max \{\overline{\epsilon }\,\hat{c}_{\nabla \Phi },\underline{\epsilon }\,\check{c}_{\nabla \Phi }\} \le \hat{\epsilon }\max \{\hat{c}_{\nabla \Phi },\check{c}_{\nabla \Phi }\}\end{aligned}$$

and hence

$$\begin{aligned} c_{\mathsf {m,t},\epsilon }&\le \hat{c}_{\nabla \Phi } \max \{\hat{c}_{\nabla \Phi },c_{\det (\nabla \Phi )}\} \max \{\hat{c}_{\nabla \Phi },\check{c}_{\nabla \Phi }\} \,\hat{\epsilon }\,c_{\mathsf {p},\Xi }\nonumber \\&\le \max \{\hat{c}_{\nabla \Phi },\check{c}_{\nabla \Phi },c_{\det (\nabla \Phi )}\}^3 \,\hat{\epsilon }\,c_{\mathsf {p},\Xi }. \end{aligned}$$
(B.7)

Especially for \(\Phi (x):=r\,x\) with \(r>0\) we have

$$\begin{aligned} |\vec \omega |_{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega )}^2&=\int _{\Omega }|\vec \omega |^2 =\int _{\Xi }\det (\nabla \Phi )|\vec {\tilde{\omega }}|^2 =r|\nabla \Phi \,\vec {\tilde{\omega }}|_{\overset{}{\mathsf {L}}{}^{2}_{}(\Xi )}^2\\&\le rc_{\mathsf {m,t},\mu ,\Xi }^2 \bigg (\big |{{\,\mathrm{curl}\,}}(\nabla \Phi \,\vec {\tilde{\omega }})\big |_{\overset{}{\mathsf {L}}{}^{2}_{}(\Xi )}^2 +\big |{{\,\mathrm{div}\,}}(\mu \nabla \Phi \,\vec {\tilde{\omega }})\big |_{\overset{}{\mathsf {L}}{}^{2}_{}(\Xi )}^2\bigg )\\&=rc_{\mathsf {m,t},\mu ,\Xi }^2 \bigg (\int _{\Xi }\big |{{\,\mathrm{{{\,\mathrm{adj}\,}}^{\top }}\,}}(\nabla \Phi )\widetilde{{{\,\mathrm{curl}\,}}\vec \omega }\big |^2 +\int _{\Xi }\big |\det (\nabla \Phi )\widetilde{{{\,\mathrm{div}\,}}\epsilon \,\vec \omega }\big |^2\bigg )\\&=rc_{\mathsf {m,t},\mu ,\Xi }^2 \bigg ( r\int _{\Xi }\det (\nabla \Phi )|\widetilde{{{\,\mathrm{curl}\,}}\vec \omega }|^2 +r^{3}\int _{\Xi }\det (\nabla \Phi )|\widetilde{{{\,\mathrm{div}\,}}\epsilon \,\vec \omega }|^2\bigg )\\&=r^{2}c_{\mathsf {m,t},\mu ,\Xi }^2 \bigg (|{{\,\mathrm{curl}\,}}\vec \omega |_{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega )}^2 +r^2|{{\,\mathrm{div}\,}}\epsilon \,\vec \omega |_{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega )}^2\bigg ) \end{aligned}$$

and

$$\begin{aligned} \langle \mu \,\vec {\tilde{\omega }},\vec {\tilde{\omega }}\rangle _{\overset{}{\mathsf {L}}{}^{2}_{}(\Xi )}&=\int _{\Xi }\mu \,\vec {\tilde{\omega }}\cdot \vec {\bar{\tilde{\omega }}} =\int _{\Xi }\det (\nabla \Phi )\big ((\nabla \Phi )^{-\top }\tilde{\epsilon }\,(\nabla \Phi )^{-1}\vec {\tilde{\omega }}\big )\cdot \vec {\bar{\tilde{\omega }}}\\&=r^{-2}\int _{\Xi }\det (\nabla \Phi )(\tilde{\epsilon }\,\vec {\tilde{\omega }})\cdot \vec {\bar{\tilde{\omega }}}\\&=r^{-2}\int _{\Omega }(\epsilon \,\vec \omega )\cdot \,\vec {\bar{\omega }} =r^{-2}\langle \epsilon \,\vec \omega ,\,\vec \omega \rangle _{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega )},\\ \langle \mu \,\vec {\tilde{\omega }},\vec {\tilde{\omega }}\rangle _{\overset{}{\mathsf {L}}{}^{2}_{}(\Xi )}&\le r^{-2}\overline{\epsilon }^2|\vec \omega |_{\overset{}{\mathsf {L}}{}^{2}_{}(\Omega )}^2 =r^{-2}\overline{\epsilon }^2\int _{\Xi }\det (\nabla \Phi )|\vec {\tilde{\omega }}|^2 =r\overline{\epsilon }^2|\vec {\tilde{\omega }}|_{\overset{}{\mathsf {L}}{}^{2}_{}(\Xi )}^2,\\ \langle \mu \,\vec {\tilde{\omega }},\vec {\tilde{\omega }}\rangle _{\overset{}{\mathsf {L}}{}^{2}_{}(\Xi )}&\ge r\underline{\epsilon }^{-2}|\vec {\tilde{\omega }}|_{\overset{}{\mathsf {L}}{}^{2}_{}(\Xi )}^2, \end{aligned}$$

i.e., \(\displaystyle \hat{\mu } \le \max \{\sqrt{r}\overline{\epsilon },\underline{\epsilon }/\sqrt{r}\} \le \frac{\max \{r,1\}}{\sqrt{r}}\hat{\epsilon }\), which shows

$$\begin{aligned}c_{\mathsf {m,t},\epsilon }\le r\max \{1,r\} c_{\mathsf {m,t},\mu ,\Xi } \le r\max \{1,r\} \,\hat{\mu }\,c_{\mathsf {p},\Xi } \le \sqrt{r}\max \{1,r\}^2 \,\hat{\epsilon }\,c_{\mathsf {p},\Xi }.\end{aligned}$$

On the other hand, (B.7) gives with \(c_{\det (\nabla \Phi )}=r^{\nicefrac {3}{2}}\), \(\hat{c}_{\nabla \Phi }=\sqrt{3}r^{\nicefrac {1}{2}}\), \(\check{c}_{\nabla \Phi }=\sqrt{3}r^{-\nicefrac {1}{2}}\) the less sharp estimate

$$\begin{aligned}c_{\mathsf {m,t},\epsilon }\le 3\sqrt{3}r^{\nicefrac {3}{2}}\max \{1,r^2\}^3 \,\hat{\epsilon }\,c_{\mathsf {p},\Xi }.\end{aligned}$$

Appendix C: Proof of (3.3) in the Bi-Lipschitz case

1.1 C.1. Without boundary conditions

For this, let \(\omega =\sum _{I}\omega _{I}{{\,\mathrm{d}\,}}x^{I}\in \mathsf {D}^{q}(\Omega )\). We have to prove \(\Phi ^{*}\omega \in \mathsf {D}^{q}(\Xi )\) with \({{\,\mathrm{d}\,}}\Phi ^{*}\omega =\Phi ^{*}{{\,\mathrm{d}\,}}\omega \). Let us first assume \(\omega \in \mathring{\mathsf {C}}^{\infty ,q}(\mathbb {R}^{N})\), i.e., \(\omega _{I}\in \mathring{\mathsf {C}}^{\infty }(\mathbb {R}^{N})\) for all I. By Appendix B we have

$$\begin{aligned} {{\,\mathrm{d}\,}}\Phi _{j}&=\sum _{i}\partial _{i}\Phi _{j}{{\,\mathrm{d}\,}}x^{i}, \\ \Phi ^{*}\omega&=\sum _{I}\tilde{\omega }_{I}\Phi ^{*}{{\,\mathrm{d}\,}}x^{I} =\sum _{I}\tilde{\omega }_{I}({{\,\mathrm{d}\,}}\Phi _{i_{1}})\wedge \dots \wedge ({{\,\mathrm{d}\,}}\Phi _{i_{q}}),\\ {{\,\mathrm{d}\,}}\omega&=\sum _{I,j}\partial _{j}\omega _{I}({{\,\mathrm{d}\,}}x_{j})\wedge ({{\,\mathrm{d}\,}}x^{I}). \end{aligned}$$

By Rademacher’s theorem we know that \(\tilde{\omega }_{I}=\omega _{I}\circ \Phi \) and \(\Phi _{j}\) belong to \(\mathsf {C}^{0,1}(\Xi )\subset \overset{}{\mathsf {H}}{}^{1}_{}(\Xi )\) and that the chain rule holds, i.e., \(\partial _{i}\tilde{\omega }_{I}=\sum _{j}\widetilde{\partial _{j}\omega _{I}}\partial _{i}\Phi _{j}\). As \(\Phi _{j}\in \overset{}{\mathsf {H}}{}^{1}_{}(\Xi )\) we get \({{\,\mathrm{d}\,}}\Phi _{j}\in \mathsf {D}^{1}_{0}(\Xi )\) by

$$\begin{aligned}\langle {{\,\mathrm{d}\,}}\Phi _{j},\delta \varphi \rangle _{\mathsf {L}^{2,1}(\Xi )} =-\langle \Phi _{j},\delta \delta \varphi \rangle _{\mathsf {L}^{2,0}(\Xi )} =0\end{aligned}$$

for all \(\varphi \in \mathring{\mathsf {C}}^{\infty ,2}(\Xi )\). Thus by definition we see

$$\begin{aligned} {{\,\mathrm{d}\,}}\Phi ^{*}\omega&=\sum _{I}({{\,\mathrm{d}\,}}\tilde{\omega }_{I})\wedge ({{\,\mathrm{d}\,}}\Phi _{i_{1}})\wedge \dots \wedge ({{\,\mathrm{d}\,}}\Phi _{i_{q}})\\&=\sum _{I,i}\partial _{i}\tilde{\omega }_{I} ({{\,\mathrm{d}\,}}x^{i})\wedge ({{\,\mathrm{d}\,}}\Phi _{i_{1}})\wedge \dots \wedge ({{\,\mathrm{d}\,}}\Phi _{i_{q}})\\&=\sum _{I,i,j}\widetilde{\partial _{j}\omega _{I}}\partial _{i}\Phi _{j} ({{\,\mathrm{d}\,}}x^{i})\wedge ({{\,\mathrm{d}\,}}\Phi _{i_{1}})\wedge \dots \wedge ({{\,\mathrm{d}\,}}\Phi _{i_{q}})\\&=\sum _{I,j}\widetilde{\partial _{j}\omega _{I}} ({{\,\mathrm{d}\,}}\Phi _{j})\wedge ({{\,\mathrm{d}\,}}\Phi _{i_{1}})\wedge \dots \wedge ({{\,\mathrm{d}\,}}\Phi _{i_{q}}). \end{aligned}$$

On the other hand it holds

$$\begin{aligned} \Phi ^{*}{{\,\mathrm{d}\,}}\omega&=\sum _{I,j}\widetilde{\partial _{j}\omega _{I}}(\Phi ^{*}{{\,\mathrm{d}\,}}x_{j})\wedge (\Phi ^{*}{{\,\mathrm{d}\,}}x^{I}) =\sum _{I,j}\widetilde{\partial _{j}\omega _{I}}({{\,\mathrm{d}\,}}\Phi _{j})\wedge ({{\,\mathrm{d}\,}}\Phi _{i_{1}})\wedge \dots \wedge ({{\,\mathrm{d}\,}}\Phi _{i_{q}}). \end{aligned}$$

Therefore, \(\Phi ^{*}\omega \in \mathsf {D}^{q}(\Xi )\) with \({{\,\mathrm{d}\,}}\Phi ^{*}\omega =\Phi ^{*}{{\,\mathrm{d}\,}}\omega \). For general \(\omega \in \mathsf {D}^{q}(\Omega )\) we pick \(\phi \in \mathring{\mathsf {C}}^{\infty ,q+1}(\Xi )\). The first part of the proof (for \(\omega =*\,\phi \) and \(\Phi =\Psi \)) shows \(\Psi ^{*}*\,\phi \in \mathsf {D}^{N-q-1}(\Omega )\) with \({{\,\mathrm{d}\,}}\Psi ^{*}*\,\phi =\Psi ^{*}{{\,\mathrm{d}\,}}*\,\phi \). As \({{\,\mathrm{supp}\,}}*\,\Psi ^{*}*\,\phi \) is a compact subset of \(\Omega \), standard mollification yields a sequence \((\Phi _{n})\subset \mathring{\mathsf {C}}^{\infty ,q+1}(\Omega )\) with \(\Phi _{n}\rightarrow *\,\Psi ^{*}*\,\phi \) in \(\Delta ^{q+1}(\Omega )\). Then

$$\begin{aligned}&\langle \Phi ^{*}\omega ,\delta \phi \rangle _{\mathsf {L}^{2,q}(\Xi )}\\&\quad =\int _{\Xi }\Phi ^{*}\omega \wedge *\delta \phi =\pm \int _{\Xi }\Phi ^{*}\omega \wedge \Phi ^{*}\Psi ^{*}{{\,\mathrm{d}\,}}*\,\phi =\pm \int _{\Xi }\Phi ^{*}(\omega \wedge \Psi ^{*}{{\,\mathrm{d}\,}}*\,\phi )\\&\quad =\pm \int _{\Omega }\omega \wedge \Psi ^{*}{{\,\mathrm{d}\,}}*\,\phi =\pm \int _{\Omega }\omega \wedge {{\,\mathrm{d}\,}}\Psi ^{*}*\,\phi =\pm \langle \omega ,\delta *\Psi ^{*}*\,\phi \rangle _{\mathsf {L}^{2,q}(\Omega )}\\&\quad \uparrow \;\pm \langle \omega ,\delta \Phi _{n}\rangle _{\mathsf {L}^{2,q}(\Omega )} =\pm \langle {{\,\mathrm{d}\,}}\omega ,\Phi _{n}\rangle _{\mathsf {L}^{2,q+1}(\Omega )}\\&\quad \downarrow \;\pm \langle {{\,\mathrm{d}\,}}\omega ,*\Psi ^{*}*\phi \rangle _{\mathsf {L}^{2,q+1}(\Omega )} =\pm \int _{\Omega }{{\,\mathrm{d}\,}}\omega \wedge \Psi ^{*}*\,\phi \\&\quad =\pm \int _{\Xi }\Phi ^{*}({{\,\mathrm{d}\,}}\omega \wedge \Psi ^{*}*\,\phi ) =\pm \int _{\Xi }(\Phi ^{*}{{\,\mathrm{d}\,}}\omega )\wedge *\,\phi =-\langle \Phi ^{*}{{\,\mathrm{d}\,}}\omega ,\phi \rangle _{\mathsf {L}^{2,q+1}(\Xi )} \end{aligned}$$

and hence \(\Phi ^{*}\omega \in \mathsf {D}^{q}(\Xi )\) with \({{\,\mathrm{d}\,}}\Phi ^{*}\omega =\Phi ^{*}{{\,\mathrm{d}\,}}\omega \). Finally, for \(\omega \in \epsilon ^{-1}\Delta ^{q}(\Omega )\) we have \(\epsilon \,\omega \in \Delta ^{q}(\Omega )\) and \(*\,\epsilon \,\omega \in \mathsf {D}^{N-q}(\Omega )\). Therefore, \(\Phi ^{*}*\,\epsilon \,\omega \in \mathsf {D}^{N-q}(\Xi )\) and \({{\,\mathrm{d}\,}}\Phi ^{*}*\,\epsilon \,\omega =\Phi ^{*}{{\,\mathrm{d}\,}}*\,\epsilon \,\omega =\pm \Phi ^{*}*\delta \,\epsilon \,\omega \) by the latter considerations. Hence

$$\begin{aligned}*\,\Phi ^{*}*\delta \,\epsilon \,\omega =\pm *\,{{\,\mathrm{d}\,}}\Phi ^{*}*\,\epsilon \,\omega =\pm \delta (\underbrace{*\,\Phi ^{*}*\,\epsilon \,\Psi ^{*}}_{=\pm \mu })\,\Phi ^{*}\omega \end{aligned}$$

and \(\mu \,\Phi ^{*}\omega \in \Delta ^{q}(\Xi )\). By (B.1) we see

$$\begin{aligned}|\Phi ^{*}\omega |_{\mathsf {L}^{2,q}(\Xi )} \le c\,|\omega |_{\mathsf {L}^{2,q}(\Omega )},\qquad |{{\,\mathrm{d}\,}}\Phi ^{*}\omega |_{\mathsf {L}^{2,q+1}(\Xi )} =|\Phi ^{*}{{\,\mathrm{d}\,}}\omega |_{\mathsf {L}^{2,q+1}(\Xi )} \le c\,|{{\,\mathrm{d}\,}}\omega |_{\mathsf {L}^{2,q+1}(\Omega )}\end{aligned}$$

and

$$\begin{aligned}|\delta \mu \,\Phi ^{*}\omega |_{\mathsf {L}^{2,q-1}(\Xi )} =|{{\,\mathrm{d}\,}}\Phi ^{*}*\epsilon \,\omega |_{\mathsf {L}^{2,N-q+1}(\Xi )} \le c\,|{{\,\mathrm{d}\,}}*\epsilon \,\omega |_{\mathsf {L}^{2,N-q+1}(\Omega )} =c\,|\delta \epsilon \,\omega |_{\mathsf {L}^{2,q-1}(\Omega )}.\end{aligned}$$

1.2 C.2. With boundary conditions

Let \(\omega \in \mathring{\mathsf {D}}^{q}(\Omega )\) and \((\omega _{n})\subset \mathring{\mathsf {C}}^{\infty ,q}(\Omega )\) with \(\omega _{n}\rightarrow \omega \) in \(\mathsf {D}^{q}(\Omega )\). By Appendix C.1 we know \(\Phi ^{*}\omega ,\Phi ^{*}\omega _{n}\in \mathsf {D}^{q}(\Xi )\) with \({{\,\mathrm{d}\,}}\Phi ^{*}\omega _{n}=\Phi ^{*}{{\,\mathrm{d}\,}}\omega _{n}\) as well as \({{\,\mathrm{d}\,}}\Phi ^{*}\omega =\Phi ^{*}{{\,\mathrm{d}\,}}\omega \). Since \(\Phi ^{*}\omega _{n}=\sum _{I}\tilde{\omega }_{n,I}\Phi ^{*}{{\,\mathrm{d}\,}}x^{I}\) holds, \(\Phi ^{*}\omega _{n}\) has compact support in \(\Xi \). By standard mollification we see \(\Phi ^{*}\omega _{n}\in \mathring{\mathsf {D}}^{q}(\Xi )\). Moreover, \(\Phi ^{*}\omega _{n}\rightarrow \Phi ^{*}\omega \) in \(\mathsf {D}^{q}(\Xi )\) as \(\Phi ^{*}\omega _{n}\rightarrow \Phi ^{*}\omega \) in \(\mathsf {L}^{2,q}(\Xi )\) and

$$\begin{aligned}{{\,\mathrm{d}\,}}\Phi ^{*}\omega _{n}=\Phi ^{*}{{\,\mathrm{d}\,}}\omega _{n}\rightarrow \Phi ^{*}{{\,\mathrm{d}\,}}\omega ={{\,\mathrm{d}\,}}\Phi ^{*}\omega \end{aligned}$$

in \(\mathsf {L}^{2,q+1}(\Xi )\) by (B.1). Therefore \(\Phi ^{*}\omega \in \mathring{\mathsf {D}}^{q}(\Xi )\) with \({{\,\mathrm{\mathring{{{\,\mathrm{d}\,}}}}\,}}\Phi ^{*}\omega =\Phi ^{*}{{\,\mathrm{\mathring{{{\,\mathrm{d}\,}}}}\,}}\omega \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pauly, D. On the Maxwell and Friedrichs/Poincaré constants in ND. Math. Z. 293, 957–987 (2019). https://doi.org/10.1007/s00209-018-2218-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2218-7

Keywords

Mathematics Subject Classification

Navigation