Skip to main content
Log in

Counting absolutely cuspidals for quivers

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

For an arbitrary quiver \(Q=(I,\Omega )\) and dimension vector \(\mathbf {d} \in \mathbb {N}^I\) we define the dimension of absolutely cuspidal functions on the moduli stacks of representations of dimension \(\mathbf {d}\) of a quiver Q over a finite field \(\mathbb {F}_q\), and prove that it is a polynomial in q, which we conjecture to be positive and integral. We obtain a closed formula for these dimensions of spaces of cuspidals for totally negative quivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. More precisely, the conjecture of Deligne and Kontsevich is phrased in terms of counting geometrically irreducible \(\overline{\mathbb {Q}_l}\)-representations of \(\pi _1^{arith}(X)\); the two problems are equivalent by the Langlands correspondence, [14].

  2. In terms of plethystic functions, we may also write \(\sum _d C_{Q,d} z^d=\text{ Log }_z\text{ Exp }_{t,z}\left( tz(1-z)^{-1}\right) \).

  3. In an effort to unburden the notation, we drop the subscript \(+\) in \(\mathfrak {n}_+\).

References

  1. Borcherds, R.: Generalized Kac–Moody algebras. J. Algebra 115, 501–512 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bozec, T.: Quivers with loops and generalized crystals. Compos. Math. 152(10), 1999–2040 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bozec, T., Schiffmann, O., Vasserot, E.: On the number of points of nilpotent quiver varieties over finite fields, (2017). arXiv:1701.01797

  4. Deligne, P.: Comptage de faisceaux l-adiques, in De la géométrie aux formes automorphes (I) (en l’honneur du soixantième anniversaire de Gérard Laumon, Astérisque 369, 285–312 (2015)

    Google Scholar 

  5. Davison, B., Meinhardt, S.: Cohomological Donaldson-Thomas theory of a quiver with potential and quantum enveloping algebras, (2016). preprint arXiv:1601.02479

  6. Deng, B., Xiao, J.: A new approach to Kac’s theorem on representations of valued quivers. Math. Z. 245, 183–199 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hausel, T.: Kac’s conjecture from Nakajima quiver varieties. Invent. Math. 181, 21–37 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hausel, T., Letellier, E., Rodriguez-Villegas, F.: Positivity for Kac polynomials and DT-invariants of quivers. Ann. Math. (2) 177(3), 1147–1168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hua, J.: Counting representations of quivers over finite fields. J. Algebra 226(2), 1011–1033 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hua, J., Xiao, J.: On Ringel-Hall algebras of tame hereditary algebras. Algebr. Represent. Theory 5(5), 527–550 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kac, V.: Infinite root systems, representations of graphs and invariant theory. Invent. Math. 56(1), 57–92 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kang, S.-J.: Quantum deformations of generalized Kac-Moody algebras and their modules. J. Algebra 175(3), 1041–1066 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kontsevich, M.: Notes on motives in finite characteristic, (2007). arXiv:math/0702206

  14. Lafforgue, L.: Chtoucas de Drinfeld et correspondance de Langlands. Invent. Math. 147(1), 1–242 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Maulik, D., Okounkov, A.: Quantum groups and quantum cohomology, (2012). arXiv:1211.1287

  16. Mozgovoy, S.: Motivic Donaldson-Thomas invariants and McKay correspondence, (2011). arXiv:1107.6044

  17. Okounkov, A.: On some interesting Lie algebras, Conference in honor of Victor Kac, IMPA (2013). https://www.youtube.com/watch?v=H8rCJ7ls1K4. Accessed Nov 2015

  18. Schiffmann, O., Vasserot, E.: Cohomological Hall algebras of quivers: generators, (2017). arXiv:1705.07488

  19. Sevenhant, B., Van den Bergh, M.: A relation between a conjecture of Kac and the structure of the Hall algebra. J. Pure Appl. Algebra 160, 319–332 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to B. Davison and A. Okounkov for some stimulating discussion and correspondences, and to B. Deng and J. Xiao for explanations concerning their work [6]. The work of the first author started during his postdoctoral appointment at MIT, before being supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). The second author was partially supported by ANR (Grant 13-BS01- 0001-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Schiffmann.

Appendix A. A trivial variant of Kac’s conjecture

Appendix A. A trivial variant of Kac’s conjecture

Proposition A.1

Let \(Q=(I,\Omega )\) be any quiver, and let \(Q^{re}=(I^{re},\Omega ^{re})\) be the full subquiver of Q whose vertices are real. Then for any dimension vector \(\mathbf {d}\in \mathbb {N}^I\) we have

$$\begin{aligned} A_{Q,\mathbf {d}}(0)=\dim (\mathfrak {g}_{Q^{re}}[\mathbf {d}]). \end{aligned}$$

Proof

It is enough to show that \(A_{Q,\mathbf {d}}(0)=0\) whenever \(\mathbf {d}\) is not supported on \(I^{re}\) (and then we are reduced to the usual Kac conjecture proved by Hausel). Let \(H_{Q,\mathbf {d}}(t) \in \mathbb {N}[t]\) be the polynomial counting all isomorphism classes of representations of dimension \(\mathbf {d}\). The relation to \(A_{Q,\mathbf {n}}(t)\) reads

$$\begin{aligned} \sum _{\mathbf {d}} H_{Q,\mathbf {d}}(t)z^{\mathbf {d}}=\text{ Exp }_{t,z}\left( \sum _{\mathbf {d}} A_{Q,\mathbf {d}}(t)z^{\mathbf {d}}\right) . \end{aligned}$$
(A.1)

Evaluating (A.1) at \(t=0\), we see that \(A_{Q,\mathbf {d}}(0)=0\) for all \(\mathbf {d}\not \in \mathbb {N}^{I^{re}}\) if and only if \(H_{Q,\mathbf {d}}(0)=0\) for all \(\mathbf {d}\not \in \mathbb {N}^{I^{re}}\). Writing \(H_{Q,\mathbf {d}}(t)=c_{Q,\mathbf {d}} + t K_{Q,\mathbf {d}}(t)\) with \(c_{Q,\mathbf {d}} \in \mathbb {N}\) and \(K_{Q,\mathbf {d}}(t) \in \mathbb {N}[t]\) we immediately see that \(H_{Q,\mathbf {d}}(0)=0\) of and only if \(q\;|\; H_{Q,\mathbf {d}}(q)\) for all prime powers q. Let us now fix a finite field \(\mathbf {k}\) and \(\mathbf {d}\not \in \mathbb {N}^{I^{re}}\). Let \(i \in I \backslash I^{re}\) be an imaginary vertex for which \(\mathbf {d}_i \ne 0\), and let \(h \in \Omega \) be an edge loop at i. Define an action of the additive group \(\mathbb {G}_a(\mathbf {k})=(\mathbf {k},+)\) on the set \(Ind_{Q,\mathbf {d},\mathbf {k}}\) of isomorphism classes of indecomposable representations of dimension \(\mathbf {d}\) by setting

$$\begin{aligned} \lambda \cdot (x_\gamma )_{\gamma \in \Omega } =(x_{\gamma } + \lambda \delta _{\gamma ,h} Id_{\mathbf {k}^{\mathbf {d}_i}})_{\gamma \in \Omega }. \end{aligned}$$

Considering the eigenvalues of \(x_h\), we see that this action is free. This proves that \(q\;|\; H_{Q,\mathbf {d}}(q)\) as wanted. \(\square \)

Remark

A more interesting variant of Kac’s conjecture in the context of quivers with edge loops is proved in [3]: the constant term of the nilpotent Kac polynomial \(A^{1}_{Q,\mathbf {d}}(t)\) is equal to the multiplicity of the root \(\mathbf {d}\) in the generalized Borcherds algebra \(\mathfrak {g}_Q\) associated to Q in [2].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozec, T., Schiffmann, O. Counting absolutely cuspidals for quivers. Math. Z. 292, 133–149 (2019). https://doi.org/10.1007/s00209-018-2155-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2155-5

Navigation