Skip to main content
Log in

Mean Hölder–Lipschitz potentials in curved Campanato–Radon spaces and equations \((-\Delta )^{\frac{\alpha }{2}}u=\mu = F_k[u]\)

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

This paper shows that under

$$\begin{aligned} {\left\{ \begin{array}{ll} 0<s<1;\\ 0<\alpha<n;\\ 0<\beta \le n;\\ {1\le \min \{p, q\}\le \max \{p,q\}<\beta p(n-\alpha p)^{-1}}<\infty ;\\ \lambda =q(np^{-1}-s-\alpha )+n-\beta , \end{array}\right. } \end{aligned}$$

if \(\mu \) is a nonnegative Radon measure on \({\mathbb {R}}^n\) with the \(\beta \)-dimensional upper curvature \(|||\mu |||_{\beta }<\infty \) then \(I_{\alpha } \dot{\varLambda }_s^{p,\infty }\) (the mean Hölder–Lipschitz potential space on \({\mathbb {R}}^n\)) embeds continuously into \(\mathcal {L}^{q,\lambda }_{\mu }\) (the curved Campanato–Radon space on \({\mathbb {R}}^n\)); and yet its converse is still valid with \(\mu \) being admissible/doubling (cf. Theorem 1.1), thereby discovering the \(\gamma \)-Hölder–Lipschitz continuity of any duality solution to the \(\alpha \)-th Laplace equation \((-\varDelta )^{\frac{\alpha }{2}}u=\mu \) or the \([1,\frac{n}{2})\cap \{1,2,\ldots ,n\}\ni k\)-th Hessian equation \(F_k[u]=\mu \) under a suitable curvature condition \(|||\mu |||_{\beta }<\infty \) (cf. Theorems 1.3 and 1.5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, D.R.: A note on Riesz potentials. Duke Math. J. 42, 765–778 (1975)

    Article  MathSciNet  Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Math. Monographs. The Clarendon Press, Oxford University Press, New York (2000)

  3. Bourgain, J., Brezis, H., Mironescu, P.: Limiting embedding theorems for \(W^{s, p}\) when \(s\rightarrow 1\) and applications. J. Anal. Math. 87, 77–101 (2002)

    Article  MathSciNet  Google Scholar 

  4. Brasseur, J.: A Bourgain-Brezis-Mironescu characterization of higher order Besov-Nikol’skii spaces. Ann. Inst. Fourier 68, 1671–1714 (2018)

    Article  MathSciNet  Google Scholar 

  5. Bucur, C.: Some observations on the Green function for the ball in the fractional Laplace framework. Commun. Pure Appl. Anal. 15, 657–699 (2016)

    Article  MathSciNet  Google Scholar 

  6. Capella, A., Dávila, J., Dupaigne, L., Sire, Y.: Regularity of radial extremal solutions for some non-local semilinear equations. Commun. Partial Differ. Equ. 36, 1353–1384 (2011)

    Article  MathSciNet  Google Scholar 

  7. Cohen, A., Dahmen, W., Daubechies, I., DeVore, R.: Harmonic analysis of space \(BV\). Rev. Mat. Iberoam. 52, 235–263 (2003)

    Article  MathSciNet  Google Scholar 

  8. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Taylor and Francis Group, Boca Raton (2015)

    Book  Google Scholar 

  9. Ferrari, F., Franchi, B., Verbitsky, I.E.: Hessian inequalities and the fractional Laplacian. J. Reine Angew. Math. 667, 133–148 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Flett, T.M.: Lipschitz spaces of functions on the circle and the disc. J. Math. Anal. Appl. 39, 125–158 (1972)

    Article  MathSciNet  Google Scholar 

  11. Fusco, N., Spector, D.: A remark on an integral characterization of the dual of \(BV\). J. Math. Anal. Appl. 457, 1370–1375 (2018)

    Article  MathSciNet  Google Scholar 

  12. García-Cuerva, J., Rubio de Francia, J.L.: Weighted Norm Inequalities and Related Topics. North-Holland, Amsterdam (1985)

    MATH  Google Scholar 

  13. Grafakos, L.: Modern Fourier Analysis, 3rd Edition. Graduate Texts in Mathematics, vol. 250. Springer, New York (2014)

    MATH  Google Scholar 

  14. Jawerth, B.: Some observations on Besov and Lizorkin–Triebel spaces. Math. Scand. 40, 94–104 (1977)

    Article  MathSciNet  Google Scholar 

  15. Karlsen, K.H., Petitta, F., Ulusoy, S.: A duality approach to the fractional Laplacian with measure data. Publ. Mat. 55, 151–161 (2011)

    Article  MathSciNet  Google Scholar 

  16. Labutin, D.A.: Potential estimates for a class of fully nonlinear elliptic equations. Duke Math. J. 111, 1–49 (2002)

    Article  MathSciNet  Google Scholar 

  17. Liu, L., Xiao, J.: Restricting Riesz–Morrey–Hardy potentials. J. Differ. Equ. 262, 5468–5496 (2017)

    Article  MathSciNet  Google Scholar 

  18. Liu, L., Xiao, J.: A trace law for the Hardy–Morrey–Sobolev space. J. Funct. Anal. 274, 80–120 (2018)

    Article  MathSciNet  Google Scholar 

  19. Liu, L., Xiao, J.: Morrey potentials from Campanato classes. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18, 1503–1517 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Meerschaert, M.M., Mortensen, J., Wheateraft, S.W.: Fractional vector calculus for fractional advection–dispersion. Phys. A 367, 181–190 (2006)

    Article  Google Scholar 

  21. Meyer, Y.: Oscillating Patterns in Some Nonlinear Evolution Equations. Mathematical Foundation of Turbulent Viscous Flows. Lecture Notes in Mathematics, vol. 1871, pp. 101–187. Springer, Berlin (2006)

    Google Scholar 

  22. Meyers, N.G., Ziemer, W.P.: Integral intequalities of Poincaré and Wirtinger type for BV functions. Am. J. Math. 99, 1345–1360 (1977)

    Article  Google Scholar 

  23. Milman, M., Xiao, J.: The \(\infty \)-Besov capacity problem. Math. Nachr. 290, 2961–2976 (2017)

    Article  MathSciNet  Google Scholar 

  24. Muramatu, T.: On the dual of Besov spaces. Publ. RIMS. Kyoto Univ. 12, 123–140 (1976)

    Article  MathSciNet  Google Scholar 

  25. Nakai, E.: The Campanato, Morrey and Hölder spaces on spaces of homogeneous type. Studia Math. 176, 1–19 (2006)

    Article  MathSciNet  Google Scholar 

  26. Palatucci, G., Pisante, A.: Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces. Calc. Var. Partial Differ. Equ. 50, 799–829 (2014)

    Article  MathSciNet  Google Scholar 

  27. Phuc, N.C., Torres, M.: Characterizations of the existence and removable singularities of divergence-measure vector fields. Indiana Univ. Math. J. 57, 1573–1597 (2008)

    Article  MathSciNet  Google Scholar 

  28. Phuc, N.C., Verbitsky, I.E.: Quasilinear and Hessian equations of Lane–Emden type. Ann. Math. (2) 168, 859–914 (2008)

    Article  MathSciNet  Google Scholar 

  29. Qui, B.H.: Harmonic functions, Riesz potentials, and the Lipschitz spaces of Herz. Hiroshima Math. J. 9, 245–295 (1979)

    Article  MathSciNet  Google Scholar 

  30. Triebel, H.: On spaces of \(B^s_{\infty, q}\) type and \(\cal{C}^s\) type. Math. Nachr. 85, 75–90 (1978)

    Article  MathSciNet  Google Scholar 

  31. Triebel, H.: Theory of Function Spaces Monographs in Mathematics, vol. 78. Birkhäuser, Basel (1983)

    Book  Google Scholar 

  32. Trudinger, N.S., Wang, X.-J.: Hessian measures. II. Ann. Math. (2) 150, 579–604 (1999)

    Article  MathSciNet  Google Scholar 

  33. Xiao, J.: Homogeneous endpoint Besov space embeddings by Hausdorff capacity and heat equation. Adv. Math. 207, 828–846 (2006)

    Article  MathSciNet  Google Scholar 

  34. Ziemer, W.: Weakly Differentiable Functions. Springer, New York (1989)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for some helpful comments on the original version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liguang Liu.

Additional information

Communicated by Loukas Grafakos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Liguang Liu was supported by the National Natural Science Foundation of China (No. 11771446); Jie Xiao was supported by NSERC of Canada (No. 202979463102000).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Xiao, J. Mean Hölder–Lipschitz potentials in curved Campanato–Radon spaces and equations \((-\Delta )^{\frac{\alpha }{2}}u=\mu = F_k[u]\). Math. Ann. 375, 1045–1077 (2019). https://doi.org/10.1007/s00208-019-01849-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-019-01849-w

Mathematics Subject Classification

Navigation