Skip to main content
Log in

How unstable is spatial homogeneity in Keller-Segel systems? A new critical mass phenomenon in two- and higher-dimensional parabolic-elliptic cases

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The parabolic-elliptic Keller-Segel system

$$\begin{aligned} \left\{ \begin{array}{ll} u_t = \Delta u - \nabla \cdot (u\nabla v),&{} \\ 0 = \Delta v - \mu + u, &{}\quad \mu :=\frac{1}{|\Omega |} \int _\Omega u, \end{array} \right. \qquad \qquad (\star ) \end{aligned}$$

is considered under homogeneous Neumann boundary conditions in the ball \(\Omega =B_R(0)\subset {\mathbb {R}}^n\). The main objective is to reveal that in the context of radially symmetric solutions, this problem exhibits an apparently novel type of critical mass phenomenon: It is shown, namely, that for any choice of \(n\ge 2\) and \(R>0\) there exists a positive number \(m_c=m_c(n,R)\) with the following properties:

  • Whenever \(m>m_c\), for any nonconstant nonnegative radial initial data \(u_0\) with \(\int _\Omega u_0=m\) which are, in an appropriately defined sense, more concentrated than the associated spatially homogeneous equilibrium determined by \(u\equiv \frac{m}{|\Omega |}\), the corresponding initial-value problem for (\(\star \)) admits a solution blowing up in finite time; in particular, this implies that any nonconstant and radially nonincreasing initial data \(u_0\) with \(\int _\Omega u_0>m_c\) enforce blow-up in (\(\star \)).

  • If \(m<m_c\), however, then there exist infinitely many nonnegative radial functions \(u_0\) which satisfy \(\int _\Omega u_0=m\) and which are more concentrated than \(u\equiv \frac{m}{|\Omega |}\), but which yet allow for global bounded solutions to (\(\star \)) emanating from \(u_0\).

In consequence, precisely at mass levels above \(m_c\) the constant steady states of (\(\star \)) possess the extreme instability property of repelling arbitrary concentration-increasing perturbations in such a drastic sense that corresponding trajectories collapse in finite time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellomo, N., Winkler, M.: Finite-time blow-up in a degenerate chemotaxis system with flux limitation. Trans. Am. Math. Soc. Ser. B 4, 31–67 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bellomo, N., Winkler, M.: A degenerate chemotaxis system with flux limitation: maximally extended solutions and absence of gradient blow-up. Commun. Part. Differ. Equations 42, 436–473 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biler, P.: Local and global solvability of some parabolic systems modelling chemotaxis. Adv. Math. Sci. Appl. 8, 715–743 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Biler, P., Cieślak, T., Karch, G., Zienkiewicz, J.: Local criteria for blowup in two-dimensional chemotaxis models. Discrete Cont. Dyn. Syst. 37, 1841–1856 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biler, P., Corrias, L., Dolbeault, J.: Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis. J. Math. Biol. 63, 1–32 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Biler, P., Nadzieja, T.: Growth and accretion of mass in an astrophysical model II. Appl. Math. (Warsaw) 23, 351–361 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blanchet, A., Dolbeault, J., Perthame, B.: Two-dimensional Keller–Segel model: Optimal critical mass and qualitative properties of the solutions. Electron. J. Differ. Equations 44, 32 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Cieślak, T., Stinner, C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions. J. Differ. Equations 252(10), 5832–5851 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cieślak, T., Stinner, C.: New critical exponents in a fully parabolic quasilinear Keller–Segel system and applications to volume filling models. J. Differ. Equations 258(6), 2080–2113 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cieślak, T., Winkler, M.: Finite-time blow-up in a quasilinear system of chemotaxis. Nonlinearity 21, 1057–1076 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Djie, K., Winkler, M.: Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect. Nonlinear Anal. 72, 1044–1064 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Norm. Super. Pisa Cl. Sci. 24, 633–683 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Horstmann, D., Wang, G.: Blow-up in a chemotaxis model without symmetry assumptions. Eur. J. Appl. Math. 12, 159–177 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jäger, W., Luckhaus, S.: On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Am. Math. Soc. 329, 819–824 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kozono, H., Sugiyama, Y.: Local existence and finite time blow-up of solutions in the 2-D Keller–Segel system. J. Evol. Equations 8, 353–378 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and quasi-linear equations of parabolic type, vol. 23. American Mathematical Society Translations, Providence, RI (1968)

  18. Laurençot, P., Mizoguchi, N.: Finite time blowup for the parabolicparabolic Keller Segel system with critical diffusion. Ann. Inst. H. Poincaré Anal. Non Linéaire 34, 197–220 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mizoguchi, N., Winkler, M.: Finite-time blow-up in the two-dimensional parabolic Keller–Segel system (preprint)

  20. Nagai, T.: Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5, 581–601 (1995)

    MathSciNet  MATH  Google Scholar 

  21. Nagai, T.: Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains. J. Inequal. Appl. 6, 37–55 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkc. Ekvacioj Ser. Int. 40, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  23. Nanjundiah, V.: Chemotaxis, signal relaying and aggregation morphology. J. Theor. Biol. 42, 63–105 (1973)

    Article  Google Scholar 

  24. Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller–Segel equations. Funkcialaj Ekvacioj 44, 441–469 (2001)

    MathSciNet  MATH  Google Scholar 

  25. Perthame, B.: Transport Equations in Biology. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  26. Quittner, P., Souplet, P.: Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States. Birkhäuser, Basel, Boston, Berlin (2007)

    MATH  Google Scholar 

  27. Senba, T., Suzuki, T.: Chemotactic collapse in a parabolic-elliptic system of mathematical biology. Adv. Differ. Equations 6, 21–50 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Senba, T., Suzuki, T.: Weak solutions to a parabolic-elliptic system of chemotaxis. J. Funct. Anal. 191, 17–51 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equations 252(1), 692–715 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Winkler, M.: Does a ‘volume-filling effect’ always prevent chemotactic collapse? Math. Methods. Appl. Sci. 33, 12–24 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013). arXiv:1112.4156v1

Download references

Acknowledgements

The author very warmly thanks the anonymous reviewers for careful and substantial help in advancing quality and accuracy of the results and their presentation. The author moreover thanks Xinru Cao for several fruitful comments which led to significant improvements in the analysis, and he acknowledges support of the Deutsche Forschungsgemeinschaft in the context of the project Analysis of chemotactic cross-diffusion in complex frameworks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Winkler.

Additional information

Communicated by Y. Giga.

Appendix: A comparison principle for (2.6)

Appendix: A comparison principle for (2.6)

Lemma 4.4

Let \(L>0\) and \(T>0\), and suppose that \({\underline{w}}\) and \({\overline{w}}\) are two functions which belong to \(C^1([0,L]\times [0,T))\) and satisfy

$$\begin{aligned} {\underline{w}}_s(s,t)>0 \quad \text{ and } \quad {\overline{w}}(s,t)>0 \quad \text{ for } \text{ all } s\in (0,L) \text{ and } t\in (0,T) \end{aligned}$$

as well as

$$\begin{aligned} {\underline{w}}(\cdot ,t) \in W^{2,\infty }_{loc}((0,L)) \quad \text{ and } \quad {\overline{w}}(\cdot ,t) \in W^{2,\infty }_{loc}((0,L)) \quad \text{ for } \text{ all } t\in (0,T). \end{aligned}$$

If for some constants \(a\ge 0, \alpha \in {\mathbb {R}}, b\in {\mathbb {R}}\) and \(c\in {\mathbb {R}}\) we have

$$\begin{aligned}&{\underline{w}}_t \le a s^\alpha {\underline{w}}_{ss} + b{\underline{w}}{\underline{w}}_s + c{\underline{w}}_s \quad \text{ and } \quad {\overline{w}}_t \ge a s^\alpha {\overline{w}}_{ss} + b{\overline{w}}{\overline{w}}_s + c{\overline{w}}_s \\&\quad \text{ for } \text{ all } t\in (0,T) \text{ and } \text{ a.e. } s\in (0,L), \end{aligned}$$

and if moreover

$$\begin{aligned} {\underline{w}}(s,0)\le {\overline{w}}(s,0) \quad \text{ for } \text{ all } s\in (0,L) \end{aligned}$$

as well as

$$\begin{aligned} {\underline{w}}(0,t)\le {\overline{w}}(0,t) \quad \text{ and } \quad {\underline{w}}(L,t)\le {\overline{w}}(L,t) \quad \text{ for } \text{ all } t\in (0,T), \end{aligned}$$

then

$$\begin{aligned} {\underline{w}}(s,t)\le {\overline{w}}(s,t) \quad \text{ for } \text{ all } s\in [0,L]\quad \text{ and } \quad t\in [0,T). \end{aligned}$$

Proof

This directly follows upon application of [1, Lemma 5.1]. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkler, M. How unstable is spatial homogeneity in Keller-Segel systems? A new critical mass phenomenon in two- and higher-dimensional parabolic-elliptic cases. Math. Ann. 373, 1237–1282 (2019). https://doi.org/10.1007/s00208-018-1722-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-018-1722-8

Mathematics Subject Classification

Navigation