Skip to main content
Log in

Characterizing strong pseudoconvexity, obstructions to biholomorphisms, and Lyapunov exponents

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper we consider the following question: For bounded domains with smooth boundary, can strong pseudoconvexity be characterized in terms of the intrinsic complex geometry of the domain? Our approach to answering this question is based on understanding the dynamical behavior of real geodesics in the Kobayashi metric and allows us to prove a number of results for domains with low regularity. For instance, we show that for convex domains with \(C^{2,\epsilon }\) boundary strong pseudoconvexity can be characterized in terms of the behavior of the squeezing function near the boundary, the behavior of the holomorphic sectional curvature of the Bergman metric near the boundary, or any other reasonable measure of the complex geometry near the boundary. The first characterization gives a partial answer to a question of Fornæss and Wold. As an application of these characterizations, we show that a convex domain with \(C^{2,\epsilon }\) boundary which is biholomorphic to a strongly pseudoconvex domain is also strongly pseudoconvex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barth, T.J.: Convex domains and Kobayashi hyperbolicity. Proc. Amer. Math. Soc. 79(4), 556–558 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bell, S.R.: Biholomorphic mappings and the \({{\bar{\partial }}} \)-problem. Ann. of Math. (2) 114(1), 103–113 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bridson, M.R., Haefliger, A.: Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1999)

    Google Scholar 

  4. Bland, J.S.: On the existence of bounded holomorphic functions on complete Kähler manifolds. Invent. Math. 81(3), 555–566 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bland, J.S.: Bounded imbeddings of open Kähler manifolds in \({ C}^N\). Duke Math. J. 58(1), 173–203 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diederich, K., Fornæss, J.E., Wold, E.F.: Exposing points on the boundary of a strictly pseudoconvex or a locally convexifiable domain of finite 1-type. J. Geom. Anal. 24(4), 2124–2134 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deng, F., Guan, Q., Zhang, L.: Some properties of squeezing functions on bounded domains. Pacific J. Math. 257(2), 319–341 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deng, F., Guan, Q., Zhang, L.: Properties of squeezing functions and global transformations of bounded domains. Trans. Amer. Math. Soc. 368(4), 2679–2696 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frankel, S.: Affine approach to complex geometry. In: Recent Developments in Geometry (Los Angeles, CA, 1987), Contemp. Math., vol. 101, pp. 263–286. American Mathematical Society, Providence, RI (1989)

  10. Frankel, S.: Applications of affine geometry to geometric function theory in several complex variables. I. Convergent rescalings and intrinsic quasi-isometric structure. In: Several Complex Variables and Complex Geometry, Part 2 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., vol. 52, pp. 183–208. American Mathematical Society, Providence, RI (1991)

  11. Fornæss, J.E., Wold, E.F.: A non-strictly pseudoconvex domain for which the squeezing function tends to one towards the boundary. Pacific J. Math. (to appear)

  12. Hawley, N.S.: Constant holomorphic curvature. Canadian J. Math. 5, 53–56 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  13. Heintze, E., Hof, H.-C.I.: Geometry of horospheres. J. Differ. Geom. 12(4), 481–491 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. Igusa, J.: On the structure of a certain class of Kaehler varieties. Amer. J. Math. 76, 669–678 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  15. Joo, S., Kim, K.-T.: On boundary points at which the squeezing function tends to one. J. Geom. Anal. (to appear)

  16. Klembeck, P.F.: Kähler metrics of negative curvature, the Bergmann metric near the boundary, and the Kobayashi metric on smooth bounded strictly pseudoconvex sets. Indiana Univ. Math. J. 27(2), 275–282 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kobayashi, S.: Nomizu, Katsumi: Foundations of differential geometry. Vol. II. Wiley Classics Library, vol. II. John Wiley & Sons Inc, New York (1996)

    Google Scholar 

  18. Kobayashi, S.: Hyperbolic manifolds and holomorphic mappings: an introduction, 2nd edn. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2005)

  19. Liu, K., Sun, X., Yau, S.-T.: Canonical metrics on the moduli space of Riemann surfaces. I. J. Differ. Geom. 68(3), 571–637 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Royden, H. L.: Remarks on the Kobayashi metric, Several complex variables, II (Proc. Internat. Conf., Univ. Maryland, College Park, Md., 1970), Lecture Notes in Math., vol. 185, pp. 125–137. Springer, Berlin (1971)

  21. Venturini, S.: Pseudodistances and pseudometrics on real and complex manifolds. Ann. Mat. Pura Appl. 4(154), 385–402 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yeung, S.-K.: Geometry of domains with the uniform squeezing property. Adv. Math. 221(2), 547–569 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zimmer, A.: A gap theorem for the complex geometry of convex domains. Trans. Amer. Math. Soc. (to appear)

Download references

Acknowledgements

I would like to thank the referee for a number of comments and corrections which improved the present work. This material is based upon work supported by the National Science Foundation under Grants DMS-1400919 and DMS-1760233.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Zimmer.

Additional information

Communicated by Ngaiming Mok.

Appendix A. Properties of complex hyperbolic space

Appendix A. Properties of complex hyperbolic space

In this section we sketch the proof of Theorem 2.11:

Theorem A.1

If \(\gamma _1,\gamma _2:{{\mathrm{{\mathbb {R}}}}}_{\ge 0} \rightarrow {{\mathrm{{\mathbb {B}}}}}_d\) are geodesic rays such that

$$\begin{aligned} \liminf _{s,t \rightarrow \infty } K_{{{\mathrm{{\mathbb {B}}}}}_d}(\gamma _1(s), \gamma _2(t)) < +\infty , \end{aligned}$$

then there exists \(T \in {{\mathrm{{\mathbb {R}}}}}\) such that

$$\begin{aligned} \lim _{t \rightarrow \infty } K_{{{\mathrm{{\mathbb {B}}}}}_d}(\gamma _1(t), \gamma _2(t+T)) =0. \end{aligned}$$

Moreover, if the images of \(\gamma _1\) and \(\gamma _2\) are contained in the same complex geodesic then

$$\begin{aligned} \lim _{t \rightarrow \infty } \frac{1}{t} \log K_{{{\mathrm{{\mathbb {B}}}}}_d}(\gamma _1(t), \gamma _2(t+T)) = -2 \end{aligned}$$

otherwise

$$\begin{aligned} \lim _{t \rightarrow \infty } \frac{1}{t} \log K_{{{\mathrm{{\mathbb {B}}}}}_d}(\gamma _1(t), \gamma _2(t+T)) = -1. \end{aligned}$$

Proof

The first assertion is a consequence of the Kobayashi distance on \({{\mathrm{{\mathbb {B}}}}}_d\) being induced by a negatively curved Riemannian metric (it is isometric to complex hyperbolic space), see for instance [13, Proposition 4.1].

To establish the second assertion it is easiest to work with the domain

$$\begin{aligned} {{\mathrm{{\mathcal {P}}}}}_d = \left\{ (z_1, \dots , z_d) : {{\mathrm{Im}}}(z_1) > \sum _{i=2}^d \left| z_i\right| ^2\right\} \end{aligned}$$

which is biholomorphic to \({{\mathrm{{\mathbb {B}}}}}_d\).

Suppose that \(\gamma _1, \gamma _2 :{{\mathrm{{\mathbb {R}}}}}_{\ge 0} \rightarrow {{\mathrm{{\mathcal {P}}}}}_d\) are geodesic rays with

$$\begin{aligned} \lim _{t \rightarrow \infty } K_{{{\mathrm{{\mathcal {P}}}}}_d}(\gamma _1(t), \gamma _2(t)) =0. \end{aligned}$$

Using the fact that the biholomorphism group \({{\mathrm{Aut}}}_0({{\mathrm{{\mathcal {P}}}}}_d)\) of \({{\mathrm{{\mathcal {P}}}}}_d\) acts transitively on the set of geodesic rays in \({{\mathrm{{\mathcal {P}}}}}_d\), we can assume that

$$\begin{aligned} \gamma _1(t) = ie^{2t}e_1. \end{aligned}$$

Then we must have

$$\begin{aligned} \gamma _2(t) = v+\left( \alpha + i(e^{2t} + \left\| v\right\| ^2)\right) e_1 \end{aligned}$$

for some \(v \in {{\mathrm{Span}}}_{{{\mathrm{{\mathbb {C}}}}}}\{e_2,\dots , e_d\}\) and \(\alpha \in {{\mathrm{{\mathbb {R}}}}}\). Moreover, \(\gamma _1\) and \(\gamma _2\) are contained in the same complex geodesic if and only if \(v=0\).

The estimates on

$$\begin{aligned} \lim _{t \rightarrow \infty } \frac{1}{t} \log K_{{{\mathrm{{\mathcal {P}}}}}_d}(\gamma _1(t), \gamma _2(t)) \end{aligned}$$

will follow from the well known fact that if \(V \subset {{\mathrm{{\mathbb {C}}}}}^d\) is an affine subspace which intersects \({{\mathrm{{\mathcal {P}}}}}_d\) then

$$\begin{aligned} K_{V \cap {{\mathrm{{\mathcal {P}}}}}_d}(z,w) = K_{{{\mathrm{{\mathcal {P}}}}}_d}(z,w) \end{aligned}$$

for all \(z,w \in V \cap {{\mathrm{{\mathcal {P}}}}}_d\).

First suppose that \(v=0\). Then

$$\begin{aligned} \lim _{t \rightarrow \infty } \frac{1}{t} \log K_{{{\mathrm{{\mathcal {P}}}}}_d}(\gamma _1(t), \gamma _2(t)) = \lim _{t \rightarrow \infty } \frac{1}{t} \log K_{{{\mathrm{{\mathcal {H}}}}}}(ie^{2t}, \alpha +ie^{2t}) \end{aligned}$$

where \({{\mathrm{{\mathcal {H}}}}}= \{ z \in {{\mathrm{{\mathbb {C}}}}}: {{\mathrm{Im}}}(z) > 0\}\). Then

$$\begin{aligned} K_{{{\mathrm{{\mathcal {H}}}}}}(ie^{2t}, \alpha +ie^{2t}) = \frac{1}{2} {{\mathrm{arcosh}}}\left( 1 + \frac{\alpha ^2}{2e^{4t}} \right) \end{aligned}$$

and using the fact that \({{\mathrm{arcosh}}}(x) = \log (x +\sqrt{x^2-1})\) we then have

$$\begin{aligned} K_{{{\mathrm{{\mathcal {H}}}}}}(ie^{2t}, \alpha +ie^{2t}) = \frac{1}{2} \log \left( 1 + \frac{\alpha ^2}{2e^{4t}} + \frac{\left| \alpha \right| }{\sqrt{2}e^{2t}}\right) = \frac{\left| \alpha \right| }{2\sqrt{2}}e^{-2t} + \mathrm{O} \left( e^{-4t} \right) . \end{aligned}$$

So

$$\begin{aligned} \lim _{t \rightarrow \infty } \frac{1}{t} \log K_{{{\mathrm{{\mathcal {P}}}}}_d}(\gamma _1(t), \gamma _2(t)) = -2. \end{aligned}$$

Next suppose that \(v \ne 0\). Then let \({\overline{\gamma }}_2(t) = v + i(e^{2t}+\left\| v\right\| ^2)e_1\). Since

$$\begin{aligned} \lim _{t \rightarrow \infty } \frac{1}{t} \log K_{{{\mathrm{{\mathcal {P}}}}}_d}(\gamma _2(t), {\overline{\gamma }}_2(t)) = -2 \end{aligned}$$

it is enough to show that

$$\begin{aligned} \lim _{t \rightarrow \infty } \frac{1}{t} \log K_{{{\mathrm{{\mathcal {P}}}}}_d}(\gamma _1(t), {\overline{\gamma }}_2(t)) = -1. \end{aligned}$$

Next for t sufficiently large let

$$\begin{aligned} s_t = t +\frac{1}{2}\log \left( 1 -\frac{\left\| v\right\| ^2}{e^{2t}} \right) . \end{aligned}$$

Then

$$\begin{aligned} K_{{{\mathrm{{\mathcal {P}}}}}_d}({\overline{\gamma }}_2(t), {\overline{\gamma }}_2(s_t)) = \frac{1}{2}\left| \log \left( 1 -\frac{\left\| v\right\| ^2}{e^{2t}} \right) \right| = \frac{\left\| v\right\| ^2}{2}e^{-2t} + \mathrm{O}\left( e^{-4t} \right) \end{aligned}$$

so it is enough to show that

$$\begin{aligned} \lim _{t \rightarrow \infty } \frac{1}{t} \log K_{{{\mathrm{{\mathcal {P}}}}}_d}(\gamma _1(t), {\overline{\gamma }}_2(s_t)) = -1. \end{aligned}$$

Now since \({\overline{\gamma }}_2(s_t) = v + ie^{2t}e_1\) and

$$\begin{aligned} {{\mathrm{{\mathcal {P}}}}}_d \cap \left( ie^{2t} + {{\mathrm{{\mathbb {C}}}}}\cdot v\right) = \left\{ ie^{2t} + z\frac{v}{\left\| v\right\| } : z \in {{\mathrm{{\mathbb {C}}}}}, \left| z\right| \le e^t \right\} . \end{aligned}$$

we have

$$\begin{aligned}&\lim _{t \rightarrow \infty } \frac{1}{t} \log K_{{{\mathrm{{\mathcal {P}}}}}_d}(\gamma _1(t), {\overline{\gamma }}_2(s_t)) = \lim _{t \rightarrow \infty } \frac{1}{t} \log K_{e^t {{\mathrm{{\mathbb {D}}}}}}(0, \left\| v\right\| ) \\&\quad = \lim _{t \rightarrow \infty } \frac{1}{t} \log K_{{{\mathrm{{\mathbb {D}}}}}}(0, e^{-t} \left\| v\right\| ) = -1 \end{aligned}$$

where in the last equality we used the fact that \(K_{{{\mathrm{{\mathbb {D}}}}}}(0,z) = \left| z\right| + { \mathrm O}\left( \left| z\right| ^2\right) \) for z close to 0. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmer, A. Characterizing strong pseudoconvexity, obstructions to biholomorphisms, and Lyapunov exponents. Math. Ann. 374, 1811–1844 (2019). https://doi.org/10.1007/s00208-018-1715-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-018-1715-7

Navigation