Skip to main content
Log in

Moduli spaces of nonspecial pointed curves of arithmetic genus 1

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper we study the moduli stack \({\mathcal {U}}_{1,n}^{ns}\) of curves of arithmetic genus 1 with n marked points, forming a nonspecial divisor. In Polishchuk (A modular compactification of \(\mathcal {M}_{1,n}\) from \(A_\infty \)-structures, arXiv:1408.0611) this stack was realized as the quotient of an explicit scheme \(\widetilde{{\mathcal {U}}}_{1,n}^{ns}\), affine of finite type over \({\mathbb {P}}^{n-1}\), by the action of \({\mathbb {G}}_m^n\) . Our main result is an explicit description of the corresponding GIT semistable loci in \(\widetilde{{\mathcal {U}}}_{1,n}^{ns}\). This allows us to identify some of the GIT quotients with some of the modular compactifications of \({\mathcal {M}}_{1,n}\) defined in Smyth (Invent Math 192:459–503, 2013; Compos Math 147(3):877–913, 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alper, J.: Good moduli spaces for Artin stacks. Ann. Inst. Fourier 63, 2349–2402 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boggi, M.: Compactifications of configurations of points on \(\mathbb{P}^{1}\) and quadratic transformations of projective space. Indag. Math. (N.S.) 10, 191–202 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fedorchuk, M., Smyth, D.I.: Alternate Compactifications of Moduli Spaces of Curves. In: Farkas, G., Morrison, I. (eds.) Handbook of Moduli: vol. I, pp. 331–414. Int. Press, Somerville (2013)

  4. Hassett, B., Hyeon, D.: Log canonical models for the moduli space of curves: the first divisorial contraction. Trans. Am. Math. Soc. 361, 4471–4489 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hassett, B., Hyeon, D.: Log minimal model program for the moduli space of stable curves: the first flip. Ann. Math. 177, 911–968 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hartshorne, R.: Deformation Theory. Springer, New York (2010)

    Book  MATH  Google Scholar 

  7. Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147, 1–23 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lekili, Y., Perutz, T.: Arithmetic mirror symmetry for the 2-torus. arXiv:1211.4632

  9. Lekili, Y., Polishchuk, A.: A modular compactification of \(\cal{M}_{1,n}\) from \(A_\infty \)-structures. arXiv:1408.0611, to appear in Crelle’s J

  10. Looijenga, E.: Cellular decompositions of compactified moduli spaces of pointed curves. In: Dijkgraaf, R., Faber, C., van der Geer, G. (eds.) The Moduli Space of Curves (Texel Island, 1994), pp. 369–400. Birkhäuser, Boston, (1995)

  11. Mumford, D., Fogarty, J.: Geometric Invariant Theory. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

  12. Polishchuk, A.: Moduli of curves as moduli of \(A_\infty \)-structures, moduli of curves as moduli of a-infinity structures. arXiv:1312.4636, to appear in Duke Math. J

  13. Polishchuk, A.: Moduli of curves, Gröbner bases, and the Krichever map. Adv. Math. 305, 682–756 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Polishchuk, A.: Moduli of curves with nonspecial divisors and relative moduli of \(A_\infty \)-structures. arXiv:1511.03797

  15. Schaps, M.: Versal determinantal deformations. Pac. J. Math 107, 213–221 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Smyth, D.I.: Towards a classification of modular compactifications of \(\cal{M}_{g, n}\). Invent. Math. 192, 459–503 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Smyth, D.I.: Modular compactifications of the space of pointed elliptic curves I. Compos. Math. 147(3), 877–913 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Smyth, D.I.: Modular compactifications of the space of pointed elliptic curves II. Compos. Math. 147(6), 1843–1884 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stevens, J.: The versal deformation of universal curve singularities. Abh. Math. Sem. Univ. Hamburg 63, 197–213 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Stevens, J.: On the classification of reducible curve singularities. In: Campillo López, A., Narváez Macarro, L. (eds.) Algebraic Geometry and Singularities, pp. 383–407. Basel, Birkhauser (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Polishchuk.

Additional information

Supported in part by the NSF Grant DMS-1400390 and by the Russian Academic Excellence Project ‘5-100’.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polishchuk, A. Moduli spaces of nonspecial pointed curves of arithmetic genus 1. Math. Ann. 369, 1021–1060 (2017). https://doi.org/10.1007/s00208-017-1562-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-017-1562-y

Navigation