Skip to main content
Log in

Cohomological invariants for quadratic forms over local rings

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let A be local ring in which 2 is invertible and let n be a non-negative integer. We show that the nth cohomological invariant of quadratic forms is a well-defined homomorphism from the nth power of the fundamental ideal in the Witt ring of A to the degree n étale cohomology of A with mod 2 coefficients, which is surjective and has kernel the (\(\hbox {n}+1\))th power of the fundamental ideal. This is obtained by proving the Gersten conjecture for Witt groups in an important mixed-characteristic case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The result for fields of characteristic \(p \ne 2\) is a consequence of the characteristic zero result by an easy lifting argument analogous to that of Milnor, [28, p. 344]. The author thanks Jean-Pierre Serre for sharing this insight.

  2. Morel also gave two other proofs: one in [29] for fields of characteristic zero and another which uses only \(Sq^2\) but is unpublished.

  3. See the thesis of the author titled “On the Witt groups of schemes”.

  4. For instance, injectivity follows by using the field case together with the Gersten conjecture for the Witt groups \(W(A)[\frac{1}{2}]\) with two inverted; The latter has been proved by the author for any regular excellent local ring with 2 invertible. See forthcoming work of the author titled Real cohomology and the powers of the fundamental ideal for more in this direction.

  5. Manuscript notes titled “Bloch-Ogus for the étale cohomology of certain arithmetic schemes” distributed at the 1997 Seattle algebraic K-theory conference.

  6. Thesis of the author, Theorem 4.28. One can use a transfer argument to remove the restriction that the residue field of the discrete valuation ring be infinite.

  7. In a correspondence with the author B. Kahn explained that the passage from surjectivity in the case of local rings essentially smooth over a field to this case is easy and goes back to Lichtenbaum, if you grant Gillet’s Gersten conjecture for étale cohomology. Surjectivity in the case of local rings essentially smooth over a field is known [18, 19].

References

  1. Arason, J.K., Elman, R.: Powers of the fundamental ideal in the Witt ring. J. Algebra 239(1), 150–160 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arason, J.K., Pfister, A.: Beweis des Krullschen Durchschnittsatzes für den Wittring. Invent. Math. 12, 173–176 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arason, J.K.: Cohomologische invarianten quadratischer Formen. J. Algebra 36(3), 448–491 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baeza, R.: Quadratic Forms Over Semilocal Rings. Lecture Notes in Mathematics, vol. 655. Springer, Berlin (1978)

    MATH  Google Scholar 

  5. Baeza, R.: On the classification of quadratic forms over semilocal rings. Bull. Soc. Math. France Mém. 59, 7–10 (1979). Colloque sur les Formes Quadratiques, 2 (Montpellier, 1977)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balmer, P., Gille, S., Panin, I., Walter, C.: The Gersten conjecture for Witt groups in the equicharacteristic case. Doc. Math. 7, 203–217 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Bloch, S., Ogus, A.: Gersten’s conjecture and the homology of schemes. Ann. Sci. École Norm. Sup. (4) 7(1974), 181–201 (1975)

    MathSciNet  MATH  Google Scholar 

  8. Craven, T.C., Rosenberg, A., Ware, R.: The map of the Witt ring of a domain into the Witt ring of its field of fractions. Proc. Am. Math. Soc. 51, 25–30 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Colliot-Thélène, J.-L.: Formes quadratiques sur les anneaux semi-locaux réguliers. Bull. Soc. Math. France Mém. 59, 13–31 (1979). Colloque sur les Formes Quadratiques, 2 (Montpellier, 1977)

    Article  MathSciNet  MATH  Google Scholar 

  10. Colliot-Thélène, J.-L., Hoobler, R.T., Kahn, B.: The Bloch–Ogus–Gabber theorem, Algebraic \(K\)-theory (Toronto, ON, 1996). Fields Inst. Commun. vol. 16, pp. 31–94. American Mathematical Society, Providence (1997)

  11. Elman, R., Karpenko, N., Merkurjev, A.: The Algebraic and Geometric Theory of Quadratic Forms, American Mathematical Society Colloquium Publications, vol. 56. American Mathematical Society, Providence (2008)

    MATH  Google Scholar 

  12. Elkik, R.: Solutions d’équations à coefficients dans un anneau hensélien. Ann. Sci. École Norm. Sup. (4) 6(1973), 553–603 (1974)

    MathSciNet  MATH  Google Scholar 

  13. Gabber, O.: Affine analog of the proper base change theorem. Isr. J. Math. 87(1–3), 325–335 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gabber, O.: Gersten’s conjecture for some complexes of vanishing cycles. Manuscr. Math. 85(3–4), 323–343 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Geisser, T.: Motivic cohomology over Dedekind rings. Math. Z. 248(4), 773–794 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jacobson, J.: Finiteness theorems for the shifted Witt and higher Grothendieck–Witt groups of arithmetic schemes. J. Algebra 351, 254–278 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kahn, B.: \(K\)-theory of semi-local rings with finite coefficients and étale cohomology. K-Theory 25(2), 99–138 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kerz, M.: The Gersten conjecture for Milnor \(K\)-theory. Invent. Math. 175(1), 1–33 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kerz, M.: Milnor \(K\)-theory of local rings with finite residue fields. J. Algebra. Geom. 19(1), 173–191 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kerz, M., Müller-Stach, S.: The Milnor–Chow homomorphism revisited. K-Theory 38(1), 49–58 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Knebusch, M.: Symmetric bilinear forms over algebraic varieties. In: Conference on Quadratic Forms—1976 (Proceedings Conference, Queen’s University, Kingston, Ontario, 1976), Queen’s University, Kingston, Ontario, 1977, pp. 103–283. Queen’s Papers in Pure and Appl. Math., No. 46

  22. Knebusch, M.: On the local theory of signatures and reduced quadratic forms. Abh. Math. Sem. Univ. Hamburg 51, 149–195 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. Knebusch, M., Scheiderer, C.: Einführung in die reelle Algebra, Vieweg Studium: Aufbaukurs Mathematik [Vieweg Studies: Mathematics Course], vol. 63, Friedr. Vieweg & Sohn, Braunschweig (1989)

  24. Kahn, B., Sujatha, R.: Motivic cohomology and unramified cohomology of quadrics. J. Eur. Math. Soc. (JEMS) 2(2), 145–177 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lam, T.Y.: Ten lectures on quadratic forms over fields, Conference on Quadratic Forms—1976 (Proceedings Conference, Queen’s University, Kingston, Ontario, 1976), Queen’s University, Kingston, Ontario, 1977, pp. 1–102. Queen’s Papers in Pure and Appl. Math., No. 46

  26. Mahé, L.: Signatures et composantes connexes. Math. Ann. 260(2), 191–210 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mandelberg, K.I.: On the classification of quadratic forms over semilocal rings. J. Algebra 33, 463–471 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  28. Milnor, J.: Algebraic \(K\)-theory and quadratic forms. Invent. Math. 9, 318–344 (1969/1970)

  29. Morel, F.: Suite spectrale d’Adams et invariants cohomologiques des formes quadratiques. C. R. Acad. Sci. Paris Sér. I Math. 328(11), 963–968 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Morel, F.: Milnor’s conjecture on quadratic forms and mod 2 motivic complexes. Rend. Sem. Mat. Univ. Padova 114(2005), 63–101 (2006)

    MathSciNet  MATH  Google Scholar 

  31. Orlov, D., Vishik, A., Voevodsky, V.: An exact sequence for \(K^M_\ast /2\) with applications to quadratic forms. Ann. Math. (2) 165(1), 1–13 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Panin, I.A.: The equicharacteristic case of the Gersten conjecture. Tr. Mat. Inst. Steklova 241 (2003), no. Teor. Chisel, Algebra i Algebr. Geom., 169–178

  33. Pfister, A.: Quadratische Formen in beliebigen Körpern. Invent. Math. 1, 116–132 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  34. Popescu, D.: General Néron desingularization and approximation. Nagoya Math. J. 104, 85–115 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  35. Raynaud, M.: Anneaux locaux henséliens. Lecture Notes in Mathematics, vol. 169. Springer, Berlin (1970)

    MATH  Google Scholar 

  36. Rost, M.: Chow groups with coefficients. Doc. Math. 1(16), 319–393 (1996)

    MathSciNet  MATH  Google Scholar 

  37. Scheiderer, C.: Real and étale cohomology. Lecture Notes in Mathematics, vol. 1588. Springer, Berlin (1994)

    MATH  Google Scholar 

  38. Scheiderer, C.: Purity Theorems for Real Spectra and Applications, Real Analytic and Algebraic Geometry (Trento, 1992). de Gruyter, Berlin (1995)

    MATH  Google Scholar 

  39. Théorie des topos et cohomologie étale des schémas. Tome 3, Lecture Notes in Mathematics, vol. 305, Springer, Berlin, 1973, Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat

  40. Strano, R.: On the étale cohomology of Hensel rings. Commun. Algebra 12(17–18), 2195–2211 (1984)

    Article  MATH  Google Scholar 

  41. Tamme, G.: Introduction to étale cohomology, Universitext. Springer, Berlin (1994). (Translated from the German by Manfred Kolster)

    Book  MATH  Google Scholar 

  42. Voevodsky, V.: Motivic cohomology with \({ Z}/2\)-coefficients. Publ. Math. Inst. Hautes Études Sci. 98, 59–104 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yucas, J.L.: A classification theorem for quadratic forms over semilocal rings. Ann. Math. Sil. 14, 7–12 (1986)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Allen Jacobson.

Additional information

The author wishes to thank Raman Parimala and Suresh Venapally for their support and encouragement at Emory University, as well as Marco Schlichting, Jean-Louis Colliot-Thélène, and Bruno Kahn, for helpful comments on an earlier draft.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacobson, J.A. Cohomological invariants for quadratic forms over local rings. Math. Ann. 370, 309–329 (2018). https://doi.org/10.1007/s00208-017-1561-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-017-1561-z

Mathematics Subject Classification

Navigation