Skip to main content
Log in

Heegner cycles and p-adic L-functions

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper, we deduce the vanishing of Selmer groups for the Rankin–Selberg convolution of a cusp form with a theta series of higher weight from the nonvanishing of the associated L-value, thus establishing the rank 0 case of the Bloch–Kato conjecture in these cases. Our methods are based on the connection between Heegner cycles and p-adic L-functions, building upon recent work of Bertolini, Darmon and Prasanna, and on an extension of Kolyvagin’s method of Euler systems to the anticyclotomic setting. In the course of the proof, we also obtain a higher weight analogue of Mazur’s conjecture (as proven in weight 2 by Cornut–Vatsal), and as a consequence of our results, we deduce from Nekovář’s work a proof of the parity conjecture in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See [17, Thm. 20.6] for the existence of the quadratic base change, and [18, §11] for the definition of L-functions on \(\mathrm{GL}(2)\).

  2. Here our convention is that p-adic cyclotomic character has Hodge–Tate weight \(+1\).

  3. As explained in [30, Example (5.3.4)(5)], this follows from properties [loc.cit.,(2)-(3)] for \(\mathcal T_\phi \), whose verification is immediate. Indeed, \((\mathcal T_\phi ,\mathcal T^+_{p,\phi })\) satisfies the Panchishkin condition of [30, Def. (3.3.1)] by construction, and \(\mathcal T_\phi \) is pure of weight 1 at all finite places, since Ramanujan’s conjecture holds for f; and anticyclotomic Hecke characters are pure of weight 0.

References

  1. Bertolini, M., Darmon, H.: Kolyvagin’s descent and Mordell–Weil groups over ring class fields. J. Reine Angew. Math. 412, 63–74 (1990)

    MathSciNet  MATH  Google Scholar 

  2. Bertolini, M., Darmon, H., Prasanna, K.: Generalized Heegner cycles and \(p\)-adic Rankin \(L\)-series. Duke Math. J. 162(6), 1033–1148 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bloch, S., Kato, K.: \(L\)-functions and Tamagawa numbers of motives. In: The Grothendieck Festschrift, vol. I. Progr. Math. vol. 86, pp. 333–400. Birkhäuser Boston, Boston (1990)

  4. Brakočević, M.: Anticyclotomic \(p\)-adic \(L\)-function of central critical Rankin–Selberg \(L\)-value. Int. Math. Res. Not. 2011(21), 4967–5018 (2011)

  5. Castella, F.: Heegner cycles and higher weight specializations of big Heegner points. Math. Ann. 356(4), 1247–1282 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Castella, F.: On the \(p\)-adic Variation of Heegner Points. Preprint. arXiv:1410.6591 (2014)

  7. Deligne, P.: Formes modulaires et représentations \(l\)-adiques. In: Séminaire Bourbaki. Vol. 1968/69: Exposés 347–363. Lecture Notes in Mathematics, vol. 175, Exp. No. 355, pp. 139–172. Springer, Berlin (1971)

  8. Deligne, P.: La conjecture de Weil. II. Inst. Hautes Études Sci. Publ. Math. 52, 137–252 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Shalit, E.: Iwasawa theory of elliptic curves with complex multiplication: \(p\)-adic \(L\) functions. In: Perspectives in Mathematics, vol. 3. Academic Press, Inc., Boston (1987)

  10. Faltings, G., Chai, C.-L.: Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 22. Springer, Berlin. (1990). With an appendix by David Mumford

  11. Fontaine, J.-M.: Représentations \(p\)-adiques semi-stables. Astérisque, 223, 113–184 (1994). Périodes \(p\)-adiques (Bures-sur-Yvette, 1988). With an appendix by Pierre Colmez

  12. Fontaine, J.-M., Perrin-Riou, B.: Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions \(L\). In: Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math, vol. 55, pp. 599–706. American Mathematical Society, Providence (1994)

  13. Hida, H.: Elementary theory of \(L\)-functions and Eisenstein series. In: London Mathematical Society Student Texts, vol. 26. Cambridge University Press, Cambridge (1993)

  14. Hida, H.: \(p\)-adic automorphic forms on Shimura varieties. In: Springer Monographs in Mathematics. Springer, New York (2004)

  15. Howard, B.: Variation of Heegner points in Hida families. Invent. Math. 167(1), 91–128 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hsieh, M.-L.: Special values of anticyclotomic Rankin–Selberg \(L\)-functions. Doc. Math. 19, 709–767 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Jacquet, H.: Automorphic forms on \({\rm GL}(2)\). Part II. In: Lecture Notes in Mathematics, vol. 278, Springer, Berlin (1972)

  18. Jacquet, H., Langlands, R.P.: Automorphic forms on \({\rm GL}(2)\). In: Lecture Notes in Mathematics, vol. 114. Springer, Berlin (1970)

  19. Katz, N.M.: \(p\)-adic properties of modular schemes and modular forms. Modular functions of one variable, III. In: Proceedings of the International Summer School, University of Antwerp, Antwerp, 1972. Lecture Notes in Mathematics, vol. 350, pp. 69–190. Springer, Berlin (1973)

  20. Katz, N.: \(p\)-adic \(L\)-functions for CM fields. Invent. Math. 49(3), 199–297 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Katz, N.: Serre–Tate local moduli, Algebraic surfaces (Orsay, 1976–78). In: Lecture Notes in Math, vol. 868, pp. 138–202. Springer, Berlin (1981)

  22. Loeffler, D., Zerbes, S.L.: Iwasawa theory and \(p\)-adic \(L\)-functions over \(\mathbb{Z}_p^2\)-extensions. Int. J. Number Theory 10(8), 2045–2095 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Loeffler, D., Zerbes, S.L.: Rankin–Eisenstein classes in Coleman families. Res. Math. Sci. 3(29), 53 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Mazur, B.: Modular curves and arithmetic. In: Proceedings of the International Congress of Mathematicians (Warsaw, 1983), vol. 1, no 2, pp. 185–211. PWN, Warsaw (1984)

  25. Mumford, D.: Abelian varieties. In: Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Published for the Tata Institute of Fundamental Research, Bombay, 2008. With appendices by C. P. Ramanujam and Yuri Manin, Corrected reprint of the second edition (1974)

  26. Nekovář, J.: Kolyvagin’s method for Chow groups of Kuga–Sato varieties. Invent. Math. 107(1), 99–125 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nekovář, J.: On the \(p\)-adic height of Heegner cycles. Math. Ann. 302(4), 609–686 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nekovář, J.: \(p\)-adic Abel–Jacobi maps and \(p\)-adic heights. In: The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998). CRM Proceedings and Lecture Notes, vol. 24, American Mathematical Society, Providence, pp. 367–379 (2000)

  29. Nekovář, J.: Selmer complexes, Astérisque, no. 310, viii+559 (2006)

  30. Nekovář, J.: On the parity of ranks of Selmer groups. III. Doc. Math. 12, 243–274 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Nekovář, J.: Erratum for “On the parity of ranks of Selmer groups. III” cf. Documenta Math. 12: 243–274 [mr2350290]. Doc. Math. 14(2009), 191–194 (2007)

    Google Scholar 

  32. Niziol, W.: On the image of \(p\)-adic regulators. Invent. Math. 127(2), 375–400 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Perrin-Riou, B.: Théorie d’Iwasawa des représentations \(p\)-adiques sur un corps local. Invent. Math. 115(1), 81–161 (1994). With an appendix by Jean-Marc Fontaine

  34. Rubin, K.: Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer. Invent. Math. 64(3), 455–470 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rubin, K.: Euler systems. In: Annals of Mathematics Studies, Hermann Weyl Lectures, vol. 147. The Institute for Advanced Study, Princeton University Press, Princeton (2000)

  36. Scholl, A.J.: Motives for modular forms. Invent. Math. 100(2), 419–430 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schmidt, R.: Some remarks on local newforms for \({\rm GL}(2)\). J. Ramanujan Math. Soc. 17(2), 115–147 (2002)

    MathSciNet  MATH  Google Scholar 

  38. Shimura, G.: Abelian Varieties with Complex Multiplication and Modular Functions, Princeton Mathematical Series, vol. 46. Princeton University Press, Princeton, NJ (1998)

    Book  MATH  Google Scholar 

  39. Shnidman, A.: \(p\)-adic heights of generalized Heegner cycles. Ann. Inst. Fourier (Grenoble) 66(3), 1117–1174 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Serre, J.-P., Tate, J.: Good reduction of abelian varieties. Ann. Math. (2) 88, 492–517 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tate, J.: Number theoretic background, Automorphic forms, representations and \(L\)-functions. In: Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII. American Mathamatical Society, Providence, pp. 3–26 (1979)

  42. Tsuji, T.: \(p\)-adic étale cohomology and crystalline cohomology in the semi-stable reduction case. Invent. Math. 137(2), 233–411 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wiles, A.: On ordinary \(\lambda \)-adic representations associated to modular forms. Invent. Math. 94(3), 529–573 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yang, T.: On CM abelian varieties over imaginary quadratic fields. Math. Ann. 329(1), 87–117 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, S.: Heights of Heegner cycles and derivatives of \(L\)-series. Invent. Math. 130(1), 99–152 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Fundamental parts of this paper were written during the visits of the first-named author to the second-named author in Taipei during February 2014 and August 2014; it is a pleasure to thank NCTS and the National Taiwan University for their hospitality and financial support. We would also like to thank Ben Howard, Shinichi Kobayashi and David Loeffler for their comments and enlightening conversations related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Castella.

Additional information

Communicated by Toby Gee.

During the preparation of this paper, F. Castella was partially supported by Grant MTM2012-34611 and by Prof. Hida’s NSF Grant DMS-0753991. M.-L. Hsieh was partially supported by a MOST Grant 103-2115-M-002-012-MY5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castella, F., Hsieh, ML. Heegner cycles and p-adic L-functions. Math. Ann. 370, 567–628 (2018). https://doi.org/10.1007/s00208-017-1517-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-017-1517-3

Navigation