Skip to main content
Log in

Balanced metrics on twisted Higgs bundles

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

A twisted Higgs bundle on a Kähler manifold X is a pair \((E,\phi )\) consisting of a holomorphic vector bundle E and a holomorphic bundle morphism \(\phi :M \otimes E \rightarrow E\) for some holomorphic vector bundle M. Such objects were first considered by Hitchin when X is a curve and M is the tangent bundle of X, and also by Simpson for higher dimensional base. The Hitchin–Kobayashi correspondence for such pairs states that \((E,\phi )\) is polystable if and only if E admits a hermitian metric solving the Hitchin equation. This correspondence is a powerful tool to decide whether there exists a solution of the equation, but it provides little information as to the actual solution. In this paper we study a quantization of this problem that is expressed in terms of finite dimensional data and balanced metrics that give approximate solutions to the Hitchin equation. Motivation for this study comes from work of Donagi–Wijnholt (JHEP 05:068, 2013) concerning balanced metrics for the Vafa–Witten equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Álvarez-Cónsul, L.: Some results on the Moduli spaces of quiver bundles. Geom. Dedicata 139, 99–120 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Álvarez-Cónsul, L., García-Prada, O.: Hitchin–Kobayashi correspondence, quivers and vortices. Commun. Math. Phys. 238, 1–33 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Álvarez-Cónsul, L., García-Prada, O.: Dimensional reduction and quiver bundles. J. Reine Angew. Math. 556, 1–46 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Álvarez-Cónsul, L., King, A.: A functorial construction of moduli of sheaves. Invent. Math. 168, 613–666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biswas, I., Ramanan, S.: An infinitesimal study of the moduli of Hitchin pairs. J. Lond. Math. Soc. 2(2), 219–231 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bradlow, S.: Vortices in holomorphic line bundles over closed Kähler manifolds. Commun. Math. Phys. 135, 1–17 (1990)

    Article  MATH  Google Scholar 

  7. Bradlow, S., García-Prada, O.: Stable triples, equivariant bundles and dimensional reduction. Math. Ann. 304, 225–252 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bradlow, S., García-Prada, O., Mundet i Riera, I.: Relative Hitchin–Kobayashi correspondence for principal pairs. Q. J. Math. 54, 111–170 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Catlin, D.: The Bergman kernel and a theorem of Tian, Analysis and geometry in several complex variables (Katata, 1997), Trends Math. Birkhäuser, Boston, pp. 1–23 (1999)

  10. Donaldson, S.K.: Infinite determinants, stable bundles and curvature. Duke Math. J. 54, 231–247 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Donaldson, S.K.: Geometry in Oxford c. 1980–85. Sir Michael Atiyah: a great mathematician of the twentieth century. Asian J. Math. 3, xliii–xlvii (1999)

  12. Donaldson, S.K.: Scalar curvature and projective embeddings, I. J. Differ. Geom. 59, 479–522 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Donaldson, S.K.: Some numerical results in complex differential geometry. Pure Appl. Math. Q. 5, 571–618 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Donagui, R., Wijnholt, M.: Gluing Branes. I. JHEP 05, 068 (2013)

    Article  MathSciNet  Google Scholar 

  15. Fefferman, C.: The Bergman kernel and biholomorphic mappings of pseudoconvex domains. Invent. Math. 26, 1–65 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Garcia-Fernandez, M., Ross, J.: Balanced metrics on vector bundles and polarised manifolds. Proc. Lond. Math. Soc. 106(5), 1143–1156 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. García-Prada, O.: Dimensional reduction of stable bundles, vortices and stable pairs. Int. J. Math. 5, 1–52 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gieseker, D.: On the moduli of vector bundles on an algebraic surface. Ann. Math. (2) 106(1), 45–60 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  19. Keller, J.: Vortex type equations and canonical metrics. Math. Ann. 337, 923–979 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Keller, J., Lukic, S.: Numerical Weyl–Petersson metrics on moduli spaces of Calabi–Yau manifolds. J. Geom. Phys. 92, 252–270 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Haydys, A.: Fukaya–Seidel category and gauge theory. J. Symplectic Geom. 13, 151–207 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hitchin, N.: The self duality equations on a Riemann surface. Proc. Lond. Math. Soc. 55, 59–126 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Huybrechts, D., Lehn, M.; The Geometry of Moduli Spaces of Sheaves, 2nd edn. Cambridge (2010)

  24. Huybrechts, D., Lehn, M.: Stable pairs on curves and surfaces. J. Algebr. Geom 4, 67–104 (1995)

    MathSciNet  MATH  Google Scholar 

  25. Kempf, G., Ness, L.: The length of vectors in representation spaces Lecture Notes in Mathematics, vol. 732, pp. 233–243. Springer, New York (1982)

  26. Leung, N.-C.: Einstein type metrics and stability on vector bundles. J. Differ. Geom. 45, 514–546 (2001)

    MathSciNet  MATH  Google Scholar 

  27. Luo, H.: Geometric criterion for Gieseker–Mumford stability of polarized manifolds. J. Differ. Geom. (3) 49, 577–599 (1998)

    MathSciNet  MATH  Google Scholar 

  28. Ma, X., Marinescu, G.: Holomorphic Morse inequalities and Bergman kernels, Progress in Mathematics, vol. 254. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  29. Mundet i Riera, I.: A Hitchin–Kobayashi correspondence for Kähler fibrations. J. Reine Angew. Math. 528, 41–80 (2000)

    MathSciNet  MATH  Google Scholar 

  30. Nitsure, N.: Moduli space of semistable pairs on a curve. Proc. Lond. Math. Soc. (3) 62, 275–300 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Phong, D.H., Sturm, J.: Stability, energy functionals and Kähler–Einstein metrics. Commun. Anal. Geom. 11(3), 565–597 (2003)

    Article  MATH  Google Scholar 

  32. Rayan, S.: Co-Higgs bundles on \({\mathbb{P}}^{1}\) New York. J. Math. 19, 925–945 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Rayan, S.: Constructing co-Higgs bundles on \(\mathbb{CP}^2\). Q. J. Math. 65(4), 1437–1460 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gomez, T., Sols, I.: Stable tensors and moduli space of orthogonal sheaves. arXiv:math/0103150

  35. Schmitt, A.: A universal construction for moduli spaces of decorated vector bundles over curves. Trans Groups 9(2), 167–209 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Schmitt, A.: Moduli for decorated tuples of sheaves and representation spaces for quivers. Proc. Indian Acad. Sci. (Math. Sci.) 115(1), 15–49 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Simpson, C.: Moduli of representations of the fundamental group of a smooth projective variety, I. Inst. Hautes Études Sci. Publ. Math. 79, 47–129 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  38. Simpson, C.: Constructing variations of Hodge structure using Yang–Mills theory and application to uniformization. J. Am. Math. Soc. 1, 867–918 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  39. Simpson, C.: Higgs Bundles and local systems. Inst. Hautes Études Sci. Publ. Math. 75, 5–95 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tian, G.: On a set of polarized Kähler metrics on algebraic manifolds. J. Differ. Geom. 32(1), 99–130 (1990)

    MathSciNet  MATH  Google Scholar 

  41. Uhlenbeck, K.K., Yau, S.-T.: On the existence of Hermitian–Yang–Mills connections on stable bundles over compact Kähler manifolds. Commun. Pure Appl. Math. 39–S, 257–293 (1986)

    Article  Google Scholar 

  42. Uhlenbeck, K.K., Yau, S.-T.: On the existence of Hermitian–Yang–Mills connections on stable bundles over compact Kähler manifolds. Commun. Pure Appl. Math. 42, 703–707 (1989)

    Article  MATH  Google Scholar 

  43. Vafa, C., Witten, E.: A strong coupling test of S-duality. Nucl. Phys. B 432, 484–550 (1994)

    MathSciNet  MATH  Google Scholar 

  44. Wang, L.: Bergman Kernel and stability of holomorphic vector bundles with sections, MIT Thesis (1997)

  45. Wang, X.: Canonical metric and stability of vector bundles over a projective manifold, Ph.D. Thesis. Brandeis University (2002)

  46. Wang, X.: Balance point and stability of vector bundles over a projective manifold. Math. Res. Lett. 9(2–3), 393–411 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, X.: Moment map, Futaki invariant and stability of projective manifolds. Commun. Anal. Geom. 12(5), 1009–1038 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, X.: Canonical metrics on stable vector bundles. Commun. Anal. Geom. 13(3), 253–286 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Witten, E.: Fivebranes and knots (2011). arXiv:1101.3216

  50. Yau, S.-T.: Nonlinear analysis in geometry. Monographies de L’Enseignement Mathématique, vol. 33 (1986)

  51. Zelditch, S.: Szegö kernels and a theorem of Tian. Int. Math. Res. Notices 6, 317–331 (1998)

    Article  MATH  Google Scholar 

  52. Zhang, S.: Heights and reductions of semi-stable varieties. Composit. Math. 1, 77–105 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We wish to thank Bo Berndtsson, Julien Keller, Luis Álvarez-Cónsul and Martijn Wijnholt for helpful comments and discussions. During this project JR has been supported by an EPSRC Career Acceleration Fellowship and MGF by the École Polytechnique Fédéral de Lausanne, the Hausdorff Research Institute for Mathematics (Bonn) and the Centre for Quantum Geometry of Moduli Spaces (Aarhus).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Garcia-Fernandez.

Additional information

Communicated by Dr. Ngaiming Mok.

Appendix: Weakly geometric metrics

Appendix: Weakly geometric metrics

We include here the justification for the terminology used for weakly geometric metrics.

Proposition 8.1

Fix a hermitian metric H on E and let \(\Vert \cdot \Vert _k\) be the geometric metric on \(H^0(E(k))\) induced by \(H_k:=H\otimes h_L^k\). Then if \(\phi :M\otimes E\rightarrow E\) is non-zero then \(\Vert \cdot \Vert _k\) is weakly geometric with respect to \(\phi \). Moreover the constant \(c'\) can be chosen uniformly as H varies in a bounded set of metrics on E.

Lemma 8.2

Let \(M'\) and E be hermitian vector bundles and

$$\begin{aligned} m:H^0(E(k)) \otimes H^0(M')\rightarrow H^0(M'\otimes E(k)) \end{aligned}$$

be the natural multiplication map. Then there exists a constant C independent of k such that

$$\begin{aligned} \Vert m\Vert ^2\le C \end{aligned}$$

where all the vector spaces are endowed with the induced \(L^2\)-metric. In fact one can take

$$\begin{aligned} C= h^0(M') \sup \left\{ |t(x)|^2_{\infty } : t\in H^0(M'), \Vert t\Vert =1\right\} . \end{aligned}$$

Proof

Let \(s_{\alpha }\) be an orthonormal basis for \(H^0(E(k))\) and \(t_{\beta }\) an orthonormal basis for \(H^0(M')\). Any \(v\in H^0(E(k))\otimes H^0(M')\) can be written as \(v = \sum _{\beta } v_{\beta }\) where \(v_{\beta }= \sum _{\alpha } a_{\alpha \beta } s_{\alpha }\otimes t_{\beta }\) for some coefficients \(a_{\alpha \beta }\). So \(\Vert v\Vert ^2 =\sum _{\beta } \Vert v_{\beta }\Vert ^2\) and \(\Vert v_{\beta }\Vert ^2 = \Vert \sum _{\alpha } a_{\alpha \beta } s_{\alpha }\Vert ^2\).

Now let \(C' = \sup _{\beta }\{ \Vert t_{\beta }\Vert ^2_{\infty }\}\). Then

$$\begin{aligned} |m(v_{\beta }(z))|^2 = |t_{\beta }(z)|^2 \left| \sum _{\alpha } a_{\alpha \beta } s_{\beta }(z)\right| ^2 \end{aligned}$$

and so

$$\begin{aligned} \Vert m(v_{\beta })\Vert \le C' \int _X \left| \sum _{\alpha } a_{\alpha \beta } s_{\beta }(z)\right| ^2 \frac{\omega ^n}{n!} = C' \Vert v_{\beta }\Vert ^2. \end{aligned}$$

Hence using Cauchy–Schwarz,

$$\begin{aligned} \Vert m(v)\Vert ^2 \le h^0(M') \sum _{\beta } \Vert m(v_{\beta })\Vert ^2 \le C \sum _{\beta } \Vert v_{\beta }\Vert ^2 = C \Vert v\Vert \end{aligned}$$

as claimed.\(\square \)

Proof of Proposition 8.1

We shall show that

$$\begin{aligned} \frac{c'}{{\text {rk}}_E}k^n \le {\left| \!\left| \!\left| \phi _{*} \right| \!\right| \!\right| }^2, \qquad \Vert \phi _{*}\Vert \le c'. \end{aligned}$$
(8.1)

We first deal with the operator norm. The map \(\phi _*\) is the composition of the multiplication map \(H^0(M)\otimes H^0(E(k)) \rightarrow H^0(M\otimes E(k)\) and the pushforward \(H^0(M\otimes E(k))\rightarrow H^0(E(k))\). The norm of this multiplication map is bounded independent of k by Lemma 8.2 applied with \(M'=M\). The norm of the pushforward is clearly bounded, as \(\phi \) is continuous and the vector spaces are endowed with their \(L^2\)-metrics. Thus we have \(\Vert \phi _*\Vert = O(k^0)\) as claimed.

Turning to the first equation in (5.2) recall that the leading order asymptotic of the Bergman kernel is given by

$$\begin{aligned} B_k = \sum _{\alpha } s_{\alpha } \otimes s_{\alpha }^{*,H_k} = k^n{\text {Id}}+ O(k^{n-1}) \end{aligned}$$

where \(\{s_{\alpha }\}\) is an orthonormal basis for \(H^0(E(k))\). Here \(B_k\) is considered as an smooth section of \({\text {End}}(E)\) and the error term can be taken in the supremum norm determined by H, and is uniform as H varies over a bounded set. We recall that in this expression the term \(s_{\alpha }\otimes s_{\alpha }^{*,H_k}\) denotes taking the fibrewise dual, so should be considered as an element in \({\text {End}}(E\otimes L^k) \simeq {\text {End}}(E)\), and under this identification

$$\begin{aligned} s_{\alpha }\otimes s_{\alpha }^{*,H_k}(\zeta ) = s_{\alpha }\tau ^{-1} (s_{\alpha },\zeta \otimes \tau )_{H_k}\quad \text {for } \zeta \in E_z, 0\ne \tau \in L_z^k. \end{aligned}$$

In particular taking the trace this implies \(\sum _{\alpha }|s_{\alpha }(z)|_{H_k}^2 = {\text {rk}}_E k^n + O(k^{n-1})\). So applying the endomorphism \(B_k\) to some non-zero \(\zeta \in E_x\) gives

$$\begin{aligned} k^n\zeta + O(k^{n-1}) = \sum _{\alpha } s_{\alpha }(z) \tau ^{-1} (s_{\alpha }(z),\zeta \otimes \tau )_{H_k}. \end{aligned}$$

Now tensoring with some \(\eta \in M_z\), applying \(\phi \) and taking the norm-squared gives

$$\begin{aligned} k^{2n}|\phi (\zeta \otimes \eta )|_H^2&= \left| \sum _{\alpha } \phi (s_{\alpha }(z) \eta \tau ^{-1}) (s_{\alpha }(z),\zeta \otimes \tau )_{H_k} + O(k^{n-1})\right| _H^2\\&= \left| \sum _{\alpha } \phi (s_{\alpha }(z)\eta ) \tau ^{-1} (s_{\alpha }(z),\zeta \otimes \tau )_{H_k} + O(k^{n-1})\right| _H^2\\&\le \sum _{\alpha } |\phi (s_{\alpha }(z)\eta )|_{H_k}^2 \sum _{\alpha } |s_{\alpha }(z)|_{H_k}^2 |\zeta |_{H}^2 + O(k^{2n-1})|\eta |_{H_M}^2|\zeta |_H^2 \end{aligned}$$

where the last inequality uses Cauchy–Schwarz for the sum, and then again for the inner product \((s_{\alpha }(z),\zeta _z\otimes \tau )_{H_k}.\) Thus

$$\begin{aligned} k^{2n} \frac{|\phi (\zeta \otimes \eta )|_H^2}{|\zeta |_H^2} \le {\text {rk}}_E k^n \sum _{\alpha } |\phi _{*}(s_{\alpha }(z)\eta )|_{H_k}^2 + O(k^{2n-1})|\eta |_{H_M}^2. \end{aligned}$$
(8.2)

Now fix an orthonormal basis \(t_{\beta }\) for \(H^0(M)\). For each \(\beta \) let \(\phi _{\beta }:E\rightarrow E\) be

$$\begin{aligned} \phi _{\beta }(\zeta ) = \phi (\zeta \otimes t_{\beta }(z))\text { for } \zeta \in E_z \end{aligned}$$

Observe that since M is globally generated, and \(\phi \ne 0\), there is at least one \(\beta \) for which \(\phi _{\beta }\) is non-zero. We let \(c'_{\beta }\) be the \(L^2\)-metric of \(\phi _{\beta }\), i.e.

$$\begin{aligned} c'_{\beta }:= \Vert \phi _{\beta }\Vert _H^2 := \int _X \Vert \phi _\beta |_z\Vert _H^2 \frac{\omega ^n}{n!} \end{aligned}$$

where \(\Vert \phi _\beta |_z\Vert _H\) is the operator norm of \(\phi _{\beta }|_z:E_z\rightarrow E_z\), and set

$$\begin{aligned} c':= \sum _{\beta } c'_{\beta }>0. \end{aligned}$$

Now if \(t_{\beta }(z)\ne 0\) then substituting \(\eta = t_{\beta }(z)\) into (8.2) gives

$$\begin{aligned} \frac{k^{n}}{{\text {rk}}_E} \frac{|\phi _{\beta }(\zeta )|_{H}^2}{|\zeta |_{H}^2}\le \sum _{\alpha } |\phi _{*}(s_{\alpha }\otimes t_{\beta }(z))|_{H_k}^2 + O(k^{n-1})|t_{\beta }(z)|_{H_M}^2 \end{aligned}$$

and taking the supremum over all non-zero \(\zeta \in E_z\) gives

$$\begin{aligned} \frac{k^{n}}{ {\text {rk}}_E} \Vert \phi _{\beta }|_z\Vert _{H}^2 \le \sum _{\alpha } |\phi _{*}(s_{\alpha }\otimes t_{\beta }(z))|_{H_k}^2 + O(k^{n-1})|t_{\beta }(z)|_{H_M}^2. \end{aligned}$$

Moreover this inequality clearly holds if \(t_{\beta }(z)=0\). Thus taking the sum over all \(\beta \) and then integrating over X gives

$$\begin{aligned} \frac{c' k^{n}}{{\text {rk}}_E} \le \sum _{\alpha ,\beta } \Vert \phi _*(s_{\alpha }\otimes t_{\beta })\Vert _{H_k}^2 + O(k^{n-1}) = {\left| \!\left| \!\left| \phi _* \right| \!\right| \!\right| } + O(k^{n-1}) \end{aligned}$$

which gives (8.1).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Fernandez, M., Ross, J. Balanced metrics on twisted Higgs bundles. Math. Ann. 367, 1429–1471 (2017). https://doi.org/10.1007/s00208-016-1416-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1416-z

Navigation