Skip to main content
Log in

A Liouville-type theorem for the 3-dimensional parabolic Gross–Pitaevskii and related systems

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove a Liouville-type theorem for semilinear parabolic systems of the form

$$\begin{aligned} {\partial _t u_i}-\Delta u_i =\sum _{j=1}^{m}\beta _{ij} u_i^ru_j^{r+1}, \quad i=1,2,\ldots ,m \end{aligned}$$

in the whole space \({\mathbb R}^N\times {\mathbb R}\). Very recently, Quittner (Math Ann. 364, 269–292, 2016) has established an optimal result for \(m=2\) in dimension \(N\le 2\), and partial results in higher dimensions in the range \(p< N/(N-2)\). By nontrivial modifications of the techniques of Gidas and Spruck and of Bidaut-Véron, we partially improve the results of Quittner in dimensions \(N\ge 3\). In particular, our results solve the important case of the parabolic Gross–Pitaevskii system—i.e. the cubic case \(r=1\)—in space dimension \(N=3\), for any symmetric (mm)-matrix \((\beta _{ij})\) with nonnegative entries, positive on the diagonal. By moving plane and monotonicity arguments, that we actually develop for more general cooperative systems, we then deduce a Liouville-type theorem in the half-space \({\mathbb R}^N_+\times {\mathbb R}\). As applications, we give results on universal singularity estimates, universal bounds for global solutions, and blow-up rate estimates for the corresponding initial value problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1.  We note that this choice of h is simpler than that in [8, 25], owing to the different form of maximum principle used in the subsequent steps (which does not require \(W\rightarrow 0\) at space infinity in (39) or (48)).

References

  1. Akhmediev, N., Ankiewicz, A.: Partially coherent solitons on a finite background. Phys. Rev. Lett. 82, 2661–2664 (1999)

    Article  Google Scholar 

  2. Amann, H.: Global existence for semilinear parabolic systems. J. Reine Angew. Math. 360, 47–83 (1985)

    MathSciNet  MATH  Google Scholar 

  3. Bartsch, Th, Dancer, N., Wang, Z.-Q.: A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. Part. Differ. Equ. 37(3–4), 345–361 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bebernes, J., Eberly, D.: Mathematical problems from combustion theory. In: Applied Mathematical Sciences, vol. 83. Springer, New York (1989)

  5. Bidaut-Véron, M.-F.: Initial blow-up for the solutions of a semilinear parabolic equation with source term. In: Équations aux dérivées partielles et applications. Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris, pp. 189-198 (1998)

  6. Bidaut-Véron, M.-F., Raoux, Th: Asymptotics of solutions of some nonlinear elliptic systems. Commun. Part. Differ. Equ. 21(7–8), 1035–1086 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Dancer, N., Wang, K., Zhang, Z.: Uniform Hölder estimate for singularly perturbed parabolic systems of Bose-Einstein condensates and competing species. J. Differ. Equ. 251(10), 2737-2769 (2011)

  8. Dancer, N.: Some notes on the method of moving planes. Bull. Aust. Math. Soc. 46(3), 425–434 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dancer, N., Wei, J., Weth, T.: A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(3), 953-969 (2010)

  10. Dancer, N., Weth, T.: Liouville-type results for non-cooperative elliptic systems in a half-space. J. Lond. Math. Soc. (2) 86(1), 111-128 (2012)

  11. Földes, J., Poláčik, P.: On cooperative parabolic systems: Harnack inequalities and asymptotic symmetry. Discrete Contin. Dyn. Syst. 25(1), 133–157 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Commun. Pure Appl. Math. 34(4), 525–598 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guo, Y., Li, B., Wei, J.: Entire nonradial solutions for non-cooperative coupled elliptic system with critical exponents in \(\mathbb{R}^3\). J. Differ. Equ. 256(10), 3463–3495 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo, Y., Liu, J.: Liouville type theorems for positive solutions of elliptic system in \(\mathbb{R}^N\). Commun. Part. Differ. Equ. 33(1–3), 263–284 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hioe, F.T.: Solitary waves for \(\mathit{N}\) coupled nonlinear Schrödinger equations. Phys. Rev. Lett. 82, 1152–1155 (1999)

    Article  MathSciNet  Google Scholar 

  16. Liu, J., Liu, X., Wang, Z.-Q.: Multiple mixed states of nodal solutions for nonlinear Schrödinger systems. Calc. Var. Part. Differ. Equ. 52(3–4), 565–586 (2015)

    Article  MATH  Google Scholar 

  17. Ma, L., Zhao, L.: Uniqueness of ground states of some coupled nonlinear Schrödinger systems and their application. J. Differ. Equ. 245(9), 2551–2565 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Merle, F., Zaag, H.: A Liouville theorem for vector-valued nonlinear heat equations and applications. Math. Ann. 316(1), 103–137 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Montaru, A., Sirakov, B., Souplet, Ph: Proportionality of components, Liouville theorems and a priori estimates for noncooperative elliptic systems. Arch. Rat. Mech. Anal. 213(1), 129–169 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Morgan, J.: Global existence for semilinear parabolic systems. SIAM J. Math. Anal. 20(5), 1128–1144 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Phan, Q.H.: Optimal Liouville-type theorem for a parabolic system. Discrete Contin. Dyn. Syst. 35(1), 399–409 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Poláčik, P.: Symmetry properties of positive solutions of parabolic equations: a survey. In: Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions. World Sci. Publ., Hackensack, pp. 170-208 (2009)

  23. Poláčik, P., Quittner, P.: A Liouville-type theorem and the decay of radial solutions of a semilinear heat equation. Nonlinear Anal. 64, 1679–1689 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Poláčik, P., Quittner, P., Souplet, Ph: Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems. Duke Math. J. 139(3), 555–579 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Poláčik, P., Quittner, P., Souplet, Ph: Singularity and decay estimates in superlinear problems via Liouville-type theorems. II. Parabolic equations. Indiana Univ. Math. J. 56(2), 879–908 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Protter, M., Weinberger, H.: Maximum Principles in Differential Equations. Prentice Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  27. Quittner, P.: Liouville theorems for scaling invariant superlinear parabolic problems with gradient structure. Math. Ann. 364, 269–292 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Quittner, P.: Liouville theorems, universal estimates and periodic solutions for cooperative parabolic Lotka–Volterra systems. J. Differ. Equ. 260, 3524–3537 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Quittner, P., Souplet, Ph.: Superlinear parabolic problems. In: Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Blow-up, Global Existence and Steady States. Birkhäuser Verlag, Basel (2007)

  30. Quittner, P., Souplet, Ph: Optimal Liouville-type theorems for noncooperative elliptic Schrödinger systems and applications. Commun. Math. Phys. 311(1), 1–19 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Quittner, P., Souplet, Ph: Symmetry of components for semilinear elliptic systems. SIAM J. Math. Anal. 44(4), 2545–2559 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Reichel, W., Zou, H.: Non-existence results for semilinear cooperative elliptic systems via moving spheres. J. Differ. Equ. 161(1), 219–243 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tavares, H., Terracini, S., Verzini, G., Weth, T.: Existence and nonexistence of entire solutions for non-cooperative cubic elliptic systems. Commun. Part. Differ. Equ. 36(11), 1988–2010 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wei, J., Weth, T.: Radial solutions and phase separation in a system of two coupled Schrödinger equations. Arch. Rat. Mech. Anal. 190(1), 83–106 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Q. H. Phan is supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number 101.02-2014.06. Ph. Souplet is partially supported by the Labex MME-DII (ANR11-LBX-0023-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Souplet.

Appendix

Appendix

We give the following version of the maximum principle for cooperative systems, which is suitable to our needs. Related results are given in [26, Section 3.8] or [11, Theorem 3.2], but do not quite satisfy our requirements (unbounded domain, parabolic inequalities assumed on the positivity set only). Here, for given vector \(W:=(w_i)_{1\le i\le m}\) and real number M, the inequality \(W\le M\) is understood as \(w_i\le M\) for all \(i=1,\dots ,m\).

Proposition 6.1

Let \(m\ge 2\), \(N\ge 1\), \(T>0\), let \(\Omega \) be an arbitrary domain of \({\mathbb R}^N\) (bounded or unbounded, not necessarily smooth). We denote \(Q_T=\Omega \times (0,T)\) and \(\partial _P Q_T=(\overline{\Omega }\times \{0\})\cup (\partial \Omega \times (0,T))\) its parabolic boundary. Let \(W=(w_i)\in C(\overline{\Omega }\times [0,T);{\mathbb R}^m)\cap C^{2,1}(Q_T;{\mathbb R}^m)\) and denote

$$\begin{aligned} D_i=\left\{ (x,t)\in Q_T:\ w_i(x,t)>0\right\} . \end{aligned}$$

Assume that W is a bounded, classical solution of the system

$$\begin{aligned} \partial _t w_i-\Delta w_i-K|\nabla w_i|\le \sum _{j=1}^m c_{ij}(x,t)w_j\quad \hbox { in} D_i,\quad i=1,\dots ,m, \end{aligned}$$
(49)

where \(K>0\) is a constant and the coefficients \(c_{ij}\) are measurable, bounded and satisfy

$$\begin{aligned} c_{ij}\ge 0 \quad {\mathrm{for}\,\mathrm{all}}\quad i\ne j. \end{aligned}$$
(50)
  1. (i)

    If \(W\le 0\) on \(\partial _PQ_T\), then \(W\le 0\) in \(Q_T\).

  2. (ii)

    Let \(M>0\) and assume in addition that

    $$\begin{aligned} \sum _{j=1}^m c_{ij}\le 0,\quad i=1,\ldots ,m. \end{aligned}$$
    (51)

If \(W\le M\) on \(\partial _PQ_T\), then \(W\le M\) in \(Q_T\).

Proof of Proposition 6.1

(i) It follows by the Stampacchia method, e.g. along the lines of [29, Proposition 52.21] and [29, Remark 52.11(a)]. We give the proof for the convenience of the reader and for completeness.

First consider the case when \(\Omega \) is bounded. Let \(i\in \{1,\dots ,m\}\). By (51), we have

$$\begin{aligned} \left[ \partial _t w_i-\Delta w_i-K|\nabla w_i|\right] (w_i)_+\le \sum _{j=1}^m c_{ij}(x,t)(w_j)(w_i)_+ \quad \hbox {in} Q_T. \end{aligned}$$

For \(t\in (0,T)\), since \((w_i)_+(\cdot ,t)\in H^1_0(\Omega )\) by our assumption, we may integrate by parts, to obtain

$$\begin{aligned} \frac{1}{2} \frac{d}{dt}\int _\Omega (w_i)_+^2&=\int _\Omega (\partial _t w_i) (w_i)_+ \\&\le -\int _\Omega \nabla w_i\cdot \nabla (w_i)_+ +K\int _\Omega |\nabla w_i| (w_i)_+ + \sum _{j=1}^m \int _\Omega c_{ij}(w_j)(w_i)_+\\&\le -\int _\Omega |\nabla (w_i)_+|^2 +\int _\Omega |\nabla (w_i)_+|^2\\&\quad +\frac{K^2}{4}\int _\Omega (w_i)_+^2 + \sum _{j=1}^m \int _\Omega c_{ij}(w_j)(w_i)_+. \end{aligned}$$

By assumption (52), it follows that

$$\begin{aligned} \frac{1}{2} \frac{d}{dt}\int _\Omega (w_i)_+^2&\le \frac{K^2}{4}\int _\Omega (w_i)_+^2 + \int _\Omega c_{ii}(w_i)_+^2 + \sum _{\begin{array}{c} j=1 \\ j\ne i \end{array}}^m \int _\Omega c_{ij}(w_j)_+(w_i)_+ \\&\le \left( \frac{K^2}{4}+\Vert c_{ii}\Vert _\infty \right) \int _\Omega (w_i)_+^2 + \frac{1}{2}\sum _{\begin{array}{c} j=1\\ j\ne i \end{array}}^m \int _\Omega c_{ij}((w_j)_+^2+(w_i)_+^2). \end{aligned}$$

Adding up for \(i=1,\dots ,m\), we get

$$\begin{aligned} \frac{d}{dt}\sum _{j=1}^m \int _\Omega (w_i)_+^2\le L\sum _{j=1}^m \int _\Omega (w_i)_+^2 \end{aligned}$$

for some constant \(L>0\). Since \(W\le 0\) at \(t=0\), it follows by integration that \(\sum _{j=1}^m \int _\Omega (w_i)_+^2\le 0\), hence \(W\le 0\) in \(Q_T\).

Now, in the case of an unbounded domain, we fix \(\varepsilon >0\) and consider the modified functions

$$\begin{aligned} \tilde{w}_i=e^{-\lambda t}w_i-\varepsilon \psi , \qquad \psi =(N+K)t +(1+|x|^2)^{1/2}>0 \end{aligned}$$

with \(\lambda >0\) to be chosen. We also set

$$\begin{aligned} \tilde{D}_i=\left\{ (x,t)\in Q_T;\ \tilde{w}_i(x,t)>0\right\} \!. \end{aligned}$$

Since \(\psi _t-\Delta \psi -K|\nabla \psi |\ge 0\), we have, in \(\tilde{D}_i\subset D_i\),

$$\begin{aligned} \partial _t \tilde{w}_i-\Delta \tilde{w}_i-K|\nabla \tilde{w}_i|&\le e^{-\lambda t}\left[ \partial _t w_i-\Delta w_i-K|\nabla w_i|-\lambda w_i\right] \\&\quad -\varepsilon \left[ \psi _t-\Delta \psi -K|\nabla \psi |\right] \\&\le e^{-\lambda t}\left[ -\lambda w_i+\sum _{j=1}^m c_{ij}(x,t)w_j\right] \\&= \left[ -\lambda \tilde{w}_i+\sum _{j=1}^m c_{ij}(x,t)\tilde{w}_j\right] +\varepsilon \left[ -\lambda +\sum _{j=1}^m c_{ij}(x,t)\right] \psi \\&\le (c_{ii}(x,t)-\lambda ) \tilde{w}_i+\sum _{{\begin{array}{c} j=1 \\ j\ne i \end{array}}}s^m c_{ij}(x,t)\tilde{w}_j, \end{aligned}$$

by choosing \(\lambda =\max _i\sum _{j=1}^m \Vert c_{ij}\Vert _\infty \). Noting that \(\tilde{w}_i<0\) for |x| large, we may then apply the previous argument to get \(\tilde{W}\le 0\) in \(Q_T\). The conclusion follows upon letting \(\varepsilon \rightarrow 0\).

(ii) Set \(\hat{w}_i:=w_i-M\). Note that, in view of assumption (53), we have, for each \(i=1,\dots ,m\),

$$\begin{aligned} \partial _t \hat{w}_i-\Delta \hat{w}_i- K |\nabla \hat{w}_i|&=\partial _t w_i-\Delta w_i- K |\nabla w_i| \\&\le \sum _{j=1}^m c_{ij}(x,t)(\hat{w}_j+M)\le \sum _{j=1}^m c_{ij}(x,t)\hat{w}_j \end{aligned}$$

in \(D_i\supset \left\{ (x,t)\in Q_T:\ \hat{w}_i(x,t)>0\right\} \). Applying assertion (i) to the functions \(\hat{w}_i\), we have the conclusion. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phan, Q.H., Souplet, P. A Liouville-type theorem for the 3-dimensional parabolic Gross–Pitaevskii and related systems. Math. Ann. 366, 1561–1585 (2016). https://doi.org/10.1007/s00208-016-1368-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1368-3

Mathematics Subject Classification

Navigation