Skip to main content
Log in

On the uniqueness of solutions of a nonlocal elliptic system

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We consider the following elliptic system with fractional Laplacian

$$\begin{aligned} -(-\Delta )^su=uv^2,\, \, -(-\Delta )^sv=vu^2,\, \, u,v>0 \ \mathrm{on}\, {\mathbb R}^n, \end{aligned}$$

where \(s\in (0,1)\) and \((-\Delta )^s\) is the s-Lapalcian. We first prove that all positive solutions must have polynomial bound. Then we use the Almgren monotonicity formula to perform a blown-down analysis. Finally we use the method of moving planes to prove the uniqueness of the one dimensional profile, up to translation and scaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applebaum, D.: Lévy processes-from probability to finance and quantum groups. Not. Am. Math. Soc. 51, 1336–1347 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Berestycki, H., Lin, T., Wei, J., Zhao, C.: On phase-separation model: asymptotics and qualitative properties. Arch. Ration. Mech. Anal. 208(1), 163–200 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berestycki, H., Terracini, S., Wang, K., Wei, J.: Existence and stability of entire solutions of an elliptic system modeling phase separation. Adv. Math. 243, 102–126 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cabre, X., Sire, Y.: Nonlinear equations for fractional Laplacians II existence, uniqueness, and qualitative properties of solutions. arXiv:1111.0796

  5. Caffarelli, L.A., Karakhanyan, A.L., Lin, F.: The geometry of solutions to a segregation problem for non-divergence systems. J. Fixed Point Theory Appl. 5(2), 319–351 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caffarelli, L.A., Lin, F.: Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries. J. Am. Math. Soci. 21, 847–862 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Lapalcian. Commun. Partial Differ. Equ. 32(8), 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Conti, M., Terracini, S., Verzini, G.: Asymptotic estimates for the spatial segregation of competitive systems. Adv. Math. 195(2), 524–560 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Humphries, N.E., et al.: Environmental context explains Lévy and Browian movement patterns of marine predators. Nature 465, 1066–1069 (2010)

    Article  Google Scholar 

  10. Fabes, E., Kenig, C., Serapioni, R.: The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Equ. 7(1), 77–116 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Farina, A.: Some symmetry results for entire solutions of an elliptic system arising in phase separation. Disc. Cont. Dyna. Syst. A. 34(6), 2505–2511 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Farina, A., Soave, N.: Monotonicity and 1-dimensional symmetry for solutions of an elliptic system arising in Bose-Einstein condensation. Arch. Ration. Mech. Anal. 213(1), 287–326 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Frank, R.L., Lenzmann, E.: Uniqueness of non-linear ground states for fractional Laplacians in \({\mathbb{R}}\). Acta Math. 210(2), 261–318 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frank, R.L., Lenzmann, E., Silvestre, L.: Uniqueness of radial solutions for the fractional Laplacian. arXiv:1302.2652

  15. Marijan M.: On harmonic functions and the hyperbolic metric. arXiv:1307.4006

  16. Noris, B., Tavares, H., Terracini, S., Verzini, G.: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun. Pure Appl. Math. 63, 267–302 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schoen, R., Yau, S.T.: Lectures on Differential Geometry. International press, Cambridge (1994)

    MATH  Google Scholar 

  18. Ros-Oton, X., Serra, J.: The Dirichlet problem for fractional Laplacian: regularity up to the boundary. arXiv:1207.5985v1

  19. Soave, N., Zilio, A.: Entire solutions with exponential growth for an elliptic system modeling phase-separation. Nonlinearity 27(2), 305–342 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tan, J., Xiong, J.: A Harnack inequality for fractional Laplace equations with lower order terms. Disc. Cont. Dyna. Syst. A. 31, 975–983 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tavares, H., Terracini, S.: Regularity of the nodal set of segregated critical configurations under a weak reflection law. Calc. Var. Partial Differ. Equ. 45(3–4), 273–317 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Terracini, S., Verzini, G., Zilio, A.: Uniform Hölder bounds for strongly competing systems involving the square root of the Lapalcian. arXiv:1211.6087 (2012)

  23. Terracini, S., Verzini, G., Zilio, A.: Uniform Hölder regularity with small exponent in competition-fractional diffusion systems. Disc. Cont. Dyn. Syst. A. 34(6), 2669–2691 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Verzini, G., Zilio, A.: Strong competition versus fractional diffusion: the case of Lotka-Volterra interaction. Commun. Partial Differ. Equ. 39, 2284–2313 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, K.: On the De Giorgi type conjecture for an elliptic system modeling phase separation. Commun. Partial Differ. Equ. 39, 696–739 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, K.: Harmonic approximation and improvement of flatness in a singular perturbation problem. Manuscripta Math. 146(1–2), 281–298 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The research of J. Wei is partially supported by NSERC of Canada. Kelei Wang is supported by NSFC No. 11301522.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juncheng Wei.

Appendix A: Basic facts about \(L_a\)-subharmonic functions

Appendix A: Basic facts about \(L_a\)-subharmonic functions

In this appendix we present several basic facts about \(L_a\)-subharmonic functions, which are used in this paper.

The first is a mean value inequality for \(L_a\)-subharmonic function.

Lemma A.1

Let u be a \(L_a\)-subharmonic function in \(B_r\subset {\mathbb R}^{n+1}\) (centered at the origin), then

$$\begin{aligned}u(0)\le C(n,a)r^{-n-1-a}\int _{B_r}y^au.\end{aligned}$$

Here C(na) is a constant depending only on n and a.

Proof

Direct calculation gives

$$\begin{aligned} \frac{d}{dr}\left( r^{-n-a}\int _{\partial B_r}y^au\right)= & {} r^{-n-a}\int _{\partial B_r}y^a\frac{\partial u}{\partial r}\\= & {} r^{-n-a}\int _{B_r}\text{ div }\left( y^a\nabla u\right) \\\ge & {} 0. \end{aligned}$$

Thus \(r^{-n-a}\int _{\partial B_r}y^au\) is non-decreasing in r. Integrating this in r shows that \(r^{-n-1-a}\int _{B_r}y^au\) is also non-decreasing in r. \(\square \)

By standard Moser’s iteration we also have the following super bound

Lemma A.2

Let u be a \(L_a\)-subharmonic function in \(B_r\subset {\mathbb R}^{n+1}\) (centered at the origin), then

$$\begin{aligned}\sup _{B_{r/2}}u\le C(n,a)\left( r^{-n-1-a}\int _{B_r}y^au^2\right) ^{\frac{1}{2}}.\end{aligned}$$

Here C(na) is a constant depending only on n and a.

Lemma A.3

Let \(M>0\) be fixed. Any \(v\in H^1(B_1^+)\cap C(\overline{B_1^+})\) nonnegative solution to

$$\begin{aligned} \left\{ \begin{array}{l} L_a v\ge 0, \ \text{ in }\ B_1^+, \\ \partial ^a_y v\ge Mv \ \ \text{ on }\ \partial ^0 B_1^+, \end{array} \right. \end{aligned}$$

satisfies

$$\begin{aligned}\sup _{\partial ^0B_{1/2}^+}v\le \frac{C(n)}{M}\int _{B_1^+}y^av.\end{aligned}$$

Proof

This is essentially [23, Lemma 3.5]. We only need to note that, since

$$\begin{aligned}\partial _y^a v\ge 0 \ \ \text{ on }\ \partial ^0 B_1^+,\end{aligned}$$

the even extension of v to \(B_1\) is \(L_a\)-subharmonic (cf. [7, Lemma 4.1]). Then by Lemma A.2,

$$\begin{aligned}\sup _{B_{2/3}^+}v\le C(n)\int _{B_1^+}y^av.\end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Wei, J. On the uniqueness of solutions of a nonlocal elliptic system. Math. Ann. 365, 105–153 (2016). https://doi.org/10.1007/s00208-015-1271-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1271-3

Mathematics Subject Classification

Navigation