Skip to main content
Log in

Clasp technology to knot homology via the affine Grassmannian

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We categorify all the Reshetikhin–Turaev tangle invariants of type A. Our main tool is a categorification of the generalized Jones–Wenzl projectors (a.k.a. clasps) as infinite twists. Applying this to certain convolution product varieties on the affine Grassmannian we extend our earlier work with Cautis and Kamnitzer (Duke Math J 142:511–588, 2008; Invent Math 174:165–232, 2008) from standard to arbitrary representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bar-Natan, D.: Fast Khovanov homology computations. J. Knot Theory Ramif. 16(3), 243–255 (2007). math.GT/0606318

  2. Cautis, S.: Flops and about: a guide. EMS Congress Reports, no. 8, pp. 61–101 (2011). arXiv:1111.0688

  3. Cautis, S.: Rigidity in higher representation theory. arXiv:1409.0827

  4. Cautis, S., Kamnitzer, J.: Knot homology via derived categories of coherent sheaves I, \({\mathfrak{sl}}_2\) case. Duke Math. J. 142(3), 511–588 (2008). math.AG/0701194

  5. Cautis, S., Kamnitzer, J.: Knot homology via derived categories of coherent sheaves II, \({\mathfrak{sl}}_m\) case. Invent. Math. 174(1), 165–232 (2008). arXiv:0710.3216

    Article  MATH  MathSciNet  Google Scholar 

  6. Cautis, S., Kamnitzer, J.: Braiding via geometric categorical Lie algebra actions. Compos. Math. 148(2), 464–506 (2012). arXiv:1001.0619

    Article  MATH  MathSciNet  Google Scholar 

  7. Cautis, S., Lauda, A.: Implicit structure in 2-representations of quantum groups. Sel. Math. (N.S.), 211, 201–244 (2014). arXiv:1111.1431

  8. Cautis, S., Licata, A.: Vertex operators and 2-representations of quantum affine algebras. arXiv:1112.6189

  9. Cautis, S., Kamnitzer, J., Licata, A.: Categorical geometric skew Howe duality. Invent. Math. 180(1), 111–159 (2010). arXiv:0902.1795

    Article  MATH  MathSciNet  Google Scholar 

  10. Cautis, S., Kamnitzer, J., Licata, A.: Coherent sheaves and categorical \({\mathfrak{sl}}_2\) actions. Duke Math. J. 154(1), 135–179 (2010). arXiv:0902.1796

    Article  MATH  MathSciNet  Google Scholar 

  11. Cautis, S., Kamnitzer, J., Licata, A.: Derived equivalences for cotangent bundles of Grassmannians via categorical \({\mathfrak{sl}}_2\) actions. J. Reine Angew. Math. 675, 53–99 (2013). arXiv:0902.1797

    MATH  MathSciNet  Google Scholar 

  12. Cautis, S., Kamnitzer, J., Licata, A.: Coherent sheaves on quiver varieties and categorification. Math. Ann. 357(3), 805–854 (2013). arXiv:1104.0352

    Article  MATH  MathSciNet  Google Scholar 

  13. Cautis, S., Kamnitzer, J., Morrison, S.: Webs and quantum skew Howe duality. Math. Ann. 360(1—-2), 351–390 (2014). arXiv:1210.6437

    Article  MATH  MathSciNet  Google Scholar 

  14. Chuang, J., Rouquier, R.: Derived equivalences for symmetric groups and \({\mathfrak{sl}}_2\)-categorification. Ann. Math. 167(1), 245–298 (2008). math.RT/0407205

  15. Cooper, B., Krushkal, V.: Categorification of the Jones–Wenzl projectors. Quantum Topol. 3, 139–180 (2012). arXiv:1005.5117

    Article  MATH  MathSciNet  Google Scholar 

  16. Frenkel, I., Khovanov, M., Stroppel, C.: A categorification of finite-dimensional irreducible representations of quantum \({\mathfrak{sl}}_2\) and their tensor products. Sel. Math. (N.S.) 12(3—-4), 379–431 (2006)

    MATH  MathSciNet  Google Scholar 

  17. Frenkel, I., Stroppel, C., Sussan, J.: Categorifying fractional Euler characteristics, Jones–Wenzl projector and 3j-symbols with applications to Exts of Harish-Chandra bimodules. Quantum Topol. 3(2), 181–253 (2012). arXiv:1007.4680

    Article  MATH  MathSciNet  Google Scholar 

  18. Gelfand, S., Manin, Y.: Methods of homological algebra, second edition, Springer, Berlin, Heidelberg (2003)

  19. Khovanov, M.: A categorification of the Jones polynomial. Duke Math. J. 101(3), 359–426 (1999). math.QA/9908171

    Article  MathSciNet  Google Scholar 

  20. Khovano, M.: A functor-valued invariant of tangles. Algebr. Geom. Topol. 2, 665–741 (2002). math.QA/0103190

    Article  MathSciNet  Google Scholar 

  21. Khovanov, M., Lauda, A., Mackaay, M., Stosic, M.: Extended graphical calculus for categorified quantum \({\mathfrak{sl}}_2\). Mem. A.M.S. 219, 87 (2012). arXiv:1006.2866

    MathSciNet  Google Scholar 

  22. Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups I, Represent. Theory 13, 309–347 (2009). arXiv:0803.4121

    MATH  MathSciNet  Google Scholar 

  23. Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups II. Trans. Am. Math. Soc. 363, 2685–2700 (2011). arXiv:0804.2080

    Article  MATH  MathSciNet  Google Scholar 

  24. Khovanov, M., Lauda, A.:A diagrammatic approach to categorification of quantum groups III, Quantum Topology 1, Issue 1 (2010), 1–92. arXiv:0807.3250

  25. Khovanov, M., Rozansky, L.: Matrix factorizations and link homology. Fund. Math. 199(1), 1–91 (2008). math.QA/0401268

    Article  MATH  MathSciNet  Google Scholar 

  26. Kuperberg, G.: Spiders for rank 2 Lie algebras. Commun. Math. Phys. 180, 109–151 (1996). arXiv:q-alg/9712003

  27. Lauda, A.: A categorification of quantum \({\mathfrak{sl}}_2\). Adv. Math. 225, 3327–3424 (2008). arXiv:0803.3652

    Article  MathSciNet  Google Scholar 

  28. Lauda, A., Queffelec, H., Rose, D.: Khovanov homology is a skew Howe 2-representation of categorified quantum \({\mathfrak{sl}}_m\). arXiv:1212.6076

  29. Lee, E.S.: An endomorphism of the Khovanov invariant. Adv. Math. 197(2), 554–586 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lusztig, G.: Introduction to Quantum Groups, Progress in Mathematics 110. Birkhäuser Boston Inc., New York, NY (1993)

  31. Manin, Y.: Quantum Groups and Non-commutative Geometry. Centre de recherche mathématique (1988)

  32. Mackaay, M., Stosic, M., Vaz, P.: \({\mathfrak{sl}}_N\)-link homology (\(N \ge 4\)) using foams and the Kapustin-Li formula. Geom. Topol. 13(2), 1075–1128 (2009). arXiv:0708.2228

    Article  MATH  MathSciNet  Google Scholar 

  33. Mazorchuk, V., Stroppel, C.: A combinatorial approach to functorial quantum \({\mathfrak{sl}}_k\) knot invariants. Am. J. Math. 131(6), 1679–1713 (2009). arXiv:0709.1971

    Article  MATH  MathSciNet  Google Scholar 

  34. Mirković, I., Vybornov, M.: On quiver varieties and affine Grassmannians of type A. C. R. Math. Acad. Sci. Paris 336(3), 207–212 (2003). math.AG/0206084

  35. Rose, D., Queffelec, H.: The \({\mathfrak{sl}}_n\) foam 2-category: a combinatorial formulation of Khovanov-Rozansky homology via categorical skew Howe duality. (2014). arXiv:1405.5920v1

  36. Rasmussen, J.: Khovanov homology and the slice genus. Invent. Math. 182(2), 419–447 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. Ringel, C.M.: Algebras, Tame, Forms, Integral Quadratic, Notes, Lecture, in Mathematics. Springer, Berlin, 1099 (1984)

  38. Reshetikhin, N., Turaev, V.: Ribbon graphs and their invariants derived from quantum groups. Commun. Math. Phys. 127, 1–26 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  39. Rose, D.: A categorification of quantum \({\mathfrak{sl}}_3\) projectors and the \({\mathfrak{sl}}_3\) Reshetikhin-Turaev invariant of tangles. Quantum Topol. 5(1), 1–59 (2014). arXiv:1109.1745v1

    Article  MATH  MathSciNet  Google Scholar 

  40. Rouquier, R.: 2-Kac-Moody algebras. arXiv:0812.5023

  41. Rouquier, R.: Quiver Hecke algebras and 2-Lie algebras. Algebra Colloq. 19(2), 48 (2012). arXiv:1112.3619

    Article  MathSciNet  Google Scholar 

  42. Rozansky, L.: An infinite torus braid yields a categorified Jones–Wenzl projector. Fund. Math. 225, 305–326 (2014). arXiv:1005.3266v1

    Article  MATH  MathSciNet  Google Scholar 

  43. Stosic, M.: Indecomposable 1-morphisms of \(\dot{U}^+_3\) and the canonical basis of \(U_q^+({\mathfrak{sl}}_3)\); arXiv:1105.4458

  44. Stroppel, C., Sussan, J.: Categorified Jones–Wenzl projectors: a comparison, Perspectives in Representation Theory: Proceedings for Igor Frenkel’s 60th birthday pp. 333–352 (2013) arXiv:1105.3038

  45. Sussan, J.: Category \(\cal O\) and \({\mathfrak{sl}}_k\) link invariants. math.QA/0701045

  46. Webster, B.: Knot invariants and higher representation theory I: diagrammatic and geometric categorification of tensor products. (2010). arXiv:1001.2020.v7

  47. Webster, B.: Knot invariants and higher representation theory II: the categorification of quantum knot invariants. arXiv:1005.4559.v5

  48. Wu, H.: A colored \({\mathfrak{sl}}_N\)-homology for links in \(S^3\). arXiv:0907.0695

  49. Yonezawa, Y.: Quantum \(({\mathfrak{sl}}_n, \Lambda V_n)\) link invariant and matrix factorizations. Nagoya Math. J. 204, 69–123 (2011). arXiv:0906.0220

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

I would like to thank Pramod Achar, Joel Kamnitzer, Mikhail Khovanov, Aaron Lauda, Anthony Licata, Jacob Rasmussen, Raphael Rouquier, Lev Rozansky, Noah Snyder and Joshua Sussan for helpful discussions. Lauda and Rasmussen also corrected and helped with the calculations in Sect. 10. Research was supported by NSF grant DMS-1101439 and the Alfred P. Sloan foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabin Cautis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cautis, S. Clasp technology to knot homology via the affine Grassmannian. Math. Ann. 363, 1053–1115 (2015). https://doi.org/10.1007/s00208-015-1196-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1196-x

Navigation