Skip to main content
Log in

On maximum, typical and generic ranks

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We show that for several notions of rank including tensor rank, Waring rank, and generalized rank with respect to a projective variety, the maximum value of rank is at most twice the generic rank. We show that over the real numbers, the maximum value of the real rank is at most twice the smallest typical rank, which is equal to the (complex) generic rank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abo, H., Ottaviani, G., Peterson, C.: Non-defectivity of Grassmannians of planes. J. Algebr. Geom. 21(1), 1–20 (2012)

    Article  MathSciNet  Google Scholar 

  2. Ådlandsvik, B.: Joins and higher secant varieties. Math. Scand. 61(2), 213–222 (1987)

    MathSciNet  Google Scholar 

  3. Alexander, J., Hirschowitz, A.: Polynomial interpolation in several variables. J. Algebr. Geom. 4(2), 201–222 (1995)

    MathSciNet  Google Scholar 

  4. Atkinson, M.D., Stephens, N.M.: On the maximal multiplicative complexity of a family of bilinear forms. Linear Algebra Appl. 27, 1–8 (1979)

    Article  MathSciNet  Google Scholar 

  5. Atkinson, M.D., Lloyd, S.: Bounds on the ranks of some \(3\)-tensors. Linear Algebra Appl. 31, 19–31 (1980)

    Article  MathSciNet  Google Scholar 

  6. Ballico, E., De Paris, A.: Generic power sum decompositions and bounds for the Waring rank (2013). arXiv:1312.3494 [math.AG]

  7. Ballico, E.: Symmetric tensor rank and scheme rank: an upper bound in terms of secant varieties. Geometry 2013. Article ID 614195 (2013). doi:10.1155/2013/614195

  8. Ballico, E.: An upper bound for the \(X\)-ranks of points of \(\mathbb{P}^n\) in positive characteristic. Albanian J. Math. 5(1), 3–10 (2011)

    MathSciNet  Google Scholar 

  9. Bernardi, A., Brachat, J., Comon, P., Mourrain, B.: Multihomogeneous polynomial decomposition using moment matrices. In: ISSAC 2011—Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation. ACM, New York, pp. 35–42 (2011)

  10. Bernardi, A., Brachat, J., Mourrain, B.: A comparison of different notions of ranks of symmetric tensors (2012). arXiv:1210.8169 [math.AG]

  11. Bernd, S., Seth, S.: Combinatorial secant varieties. Pure Appl. Math. Q. 2(3), 867–891 (2003). part 1

    Google Scholar 

  12. Białynicki-Birula, A., Schinzel, A.: Representations of multivariate polynomials by sums of univariate polynomials in linear forms. Colloq. Math. 112(2), 201–233 (2008)

    Article  MathSciNet  Google Scholar 

  13. Blekherman, G.: Typical real ranks of binary forms (2012).  arXiv:1205.3257 [math.AG]

  14. Bochnak, J., Coste, M., Roy, M.-F.: Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36. Springer, Berlin, Translated from the 1987 French original, Revised by the authors (1998)

  15. Boij, M., Carlini, E., Geramita, A.V.: Monomials as sums of powers: the real binary case. Proc. Am. Math. Soc. 139(9), 3039–3043 (2011)

    Article  MathSciNet  Google Scholar 

  16. Brachat, J., Comon, P., Mourrain, B., Tsigaridas, E.: Symmetric tensor decomposition. Linear Algebra Appl. 433(11–12), 1851–1872 (2010)

    Article  MathSciNet  Google Scholar 

  17. Buczyński, J., Landsberg, J.M.: Ranks of tensors and a generalization of secant varieties. Linear Algebra Appl. 438(2), 668–689 (2013)

    Article  MathSciNet  Google Scholar 

  18. Carlini, E., Oneto, A.: Monomials as sums of \(k\)-th powers of forms (2013). arXiv:1305.4553 [math.AC]

  19. Catalisano, M.V., Geramita, A.V., Gimigliano, A.: Secant varieties of \(\mathbb{P}^1\times \dots \times \mathbb{P}^1\) (\(n\)-times) are not defective for \(n\ge 5\). J. Algebr. Geom. 20(2), 295–327 (2011)

  20. Comon, P., Mourrain, B.: Decomposition of quantics in sums of powers of linear forms. Signal Processing, vol. 53(2). Elsevier, Amsterdam (1996)

  21. De Paris, A.: A proof that the maximal rank for plane quartics is seven (2013).  arXiv:1309.6475

  22. Drton, M., Sturmfels, B., Sullivant, S.: Lectures on algebraic statistics, Oberwolfach Seminars, vol. 39. Birkhäuser Verlag, Basel (2009)

    Book  Google Scholar 

  23. Friedland, S.: On the generic and typical ranks of 3-tensors. Linear Algebra Appl. 436(3), 478–497 (2012)

    Article  MathSciNet  Google Scholar 

  24. Fröberg, R., Ottaviani, G., Shapiro, B.: On the Waring problem for polynomial rings. Proc. Natl. Acad. Sci. USA 109(15), 5600–5602 (2012)

    Article  MathSciNet  Google Scholar 

  25. Geramita, Anthony V.: Inverse systems of fat points: Waring’s problem, secant varieties of Veronese varieties and parameter spaces for Gorenstein ideals, The Curves Seminar at Queen’s, vol. X. Queen’s papers in Pure and Appl. Math., vol. 102. Queen’s Univ. Kingston, pp. 2–114 (1995)

  26. Iarrobino, A., Kanev, V.: Power sums, Gorenstein algebras, and determinantal loci, Lecture Notes in Mathematics, vol. 1721. Springer, Berlin (1999) (Appendix C by Iarrobino and Steven L. Kleiman)

  27. Jelisiejew, J.: An upper bound for the Waring rank of a form (2013).  arXiv:1305.6957 [math.AC]

  28. Jouanolou, J.-P.: Théorèmes de Bertini et applications, Progress in Mathematics, vol. 42. Birkhäuser Boston Inc., Boston (1983)

    Google Scholar 

  29. Kleppe, J.: Representing a homogenous polynomial as a sum of powers of linear forms, Master’s thesis. University of Oslo (1999). http://folk.uio.no/johannkl/kleppe-master

  30. Landsberg, J.M., Zach, T.: On the ranks and border ranks of symmetric tensors. Found. Comp. Math. 10(3), 339–366 (2010)

    Article  Google Scholar 

  31. Landsberg, J.M.: Tensors: geometry and applications, Graduate Studies in Mathematics, vol. 128. American Mathematical Society, Providence (2012)

    Google Scholar 

  32. Lickteig, T.: Typical tensorial rank. Linear Algebra Appl. 69, 95–120 (1985)

    Article  MathSciNet  Google Scholar 

  33. Murray, R., Bremner, Hu, J.: On Kruskal’s theorem that every \(3\times 3\times 3\) array has rank at most 5. Linear Algebra Appl. 439(2), 401–421 (2013)

  34. Reznick, B.: Forms as sums of powers of lower degree forms, Slides from a talk at the SIAM Conference on Applied Algebraic Geometry, Fort Collins (2013). http://www.math.uiuc.edu/reznick/8213f-pm

  35. Reznick, B.: On the length of binary forms. In: Alladi, K., Bhargava, M., Savitt, D., Tiep, P. (eds.) Quadratic and Higher Degree Forms (New York), Developments in Math., vol. 31. Springer, Newyork, pp. 207–232 (2013)

  36. Segre, B.: The Non-singular Cubic Surfaces. Oxford University Press, Oxford (1942)

    Google Scholar 

  37. Stavrou, S.: Canonical forms of \(2 \times 2 \times 2\) and \(2 \times 2 \times 2 \times 2\) tensors, Master’s thesis, U. Saskatchewan (2012)

  38. Sumi, T., Sakata, T., Miyazaki, M.: Rank of tensors with size \(2 \times \cdots \times 2\) (2013). arXiv:1306.0708 [math.RA]

  39. Sumi, T., Miyazaki, M., Sakata, T.: About the maximal rank of 3-tensors over the real and the complex number field. Ann. Inst. Stat. Math. 62(4), 807–822 (2010)

    Article  MathSciNet  Google Scholar 

  40. Sylvester, J.J.: An essay on canonical forms, supplement to a sketch of a memoir on elimination, transformation and canonical forms, originally published by George Bell, Fleet Street, London, 1851. Paper 34 in Mathematical Papers, vol. 1. Chelsea, New York (1973) (originally published by Cambridge University Press in 1904, 1851)

Download references

Acknowledgments

We thank E. Ballico, J. Buczyński, and A. de Paris for several very helpful comments. We also thank the referee for several helpful comments, including suggesting the reference [36], and A. Boralevi for providing us a copy of [36]. G. Blekherman was partially supported by Alfred P. Sloan Research Fellowship and NSF CAREER award DMS-1352073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zach Teitler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blekherman, G., Teitler, Z. On maximum, typical and generic ranks. Math. Ann. 362, 1021–1031 (2015). https://doi.org/10.1007/s00208-014-1150-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-014-1150-3

Mathematics Subject Classification

Navigation