Skip to main content

Advertisement

Log in

Maximizers for Gagliardo–Nirenberg inequalities and related non-local problems

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this paper we study the existence of maximizers for two families of interpolation inequalities, namely a generalized Gagliardo–Nirenberg inequality and a new inequality involving the Riesz energy. Two basic tools in our argument are a generalization of Lieb’s Translation Lemma and a Riesz energy version of the Brézis–Lieb lemma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, New York (2011)

    Book  MATH  Google Scholar 

  2. Blanchard, P., Bruening, E.: Mathematical Methods in Physics: Distributions, Hilbert Space Operators, and Variational Methods. In: Progress in Mathematical Physics, vol. 26. Birkhäuser, Basel (2002)

  3. Bez, N., Rogers, K.: A sharp Strichartz estimate for the wave equation with data in the energy space. J. Eur. Math. Soc. 15(3), 805–823 (2013). doi:10.4171/JEMS/377

  4. Bellazzini, J., Ozawa, T., Visciglia, N.: Ground states for semi-relativistic Schrödinger-Poisson-Slater energies. arxiv:1103.2649

  5. Bogachev, V.I.: Measure Theory. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  6. Brézis, H., Lieb, E.H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 88(3), 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cazenave, T.: An introduction to semilinear elliptic equations. Editora do IM-UFRJ, Rio de Janeiro (2009)

    Google Scholar 

  8. Cordero-Erausquin, D., Nazaret, B., Villani, C.: A mass-transportation approach to sharp sobolev and gagliardo-nirenberg inequalities. Adv. Math. 182(2), 307–332 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Christ, M., Shao, S.: Existence of extremals for a Fourier restriction inequality. In: Analysis and PDE (to appear)

  10. Christ, F.M., Weinstein, M.I.: Dispersion of small amplitude solutions of the generalized korteweg-de vries equation. J. Funct. Anal. 100(1), 87109 (1991)

    Article  MathSciNet  Google Scholar 

  11. del Pino, M., Dolbeault, J.: Best constants for gagliardo-nirenberg inequalities and application to nonlinear diffusions. J. Math. Pures Appl. (9) 81(9), 847–875 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Oliveira e Silva, D.: Extremizers for Fourier restriction inequalities: convex arcs. arXiv:1210.0583

  13. Fanelli, L., Vega, L., Visciglia, N.: On the existence of maximizers for a family of restriction theorems. Bull. Lond. Math. Soc. 43(4), 811–817 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fanelli, L., Vega, L., Visciglia, N.: Existence of maximizers for Sobolev-Strichartz inequalities. Adv. Math. 229, 1912–1923 (2012)

  15. Fanelli, L., Visciglia, N.: The lack of compactness in the Sobolev-Strichartz inequalities. J. Math. Pures Appl. 99, 309–320 (2013)

  16. Fibich, G., Ilan, B., Papanicolau, G.: Self-focusing with fourth-order dispersion. SIAM J. Appl. Math. 62, 1437–1462 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Foschi, D.: Maximizers for the Strichartz inequality. J. Eur. Math. Soc. 9(4), 739–774 (2007)

  18. Frank, R.L., Lieb, E.H.: Sharp constants in several inequalities on the Heisenberg group. Ann. Math. 176, 349–381 (2012)

  19. Fröhlich, J., Lieb, E.H., Loss, M.: Stability of Coulomb systems with magnetic fields. i. the one-electron atom. Comm. Math. Phys. 104(2), 251–270 (1986)

  20. Grafakos, L., Oh, S.: The Kato-Ponce inequality. arxiv:1303.5144

  21. Gérard, P.: Description of the lack of compactness for the Sobolev imbedding. ESAIM Control Optim. Calc. Var. 3, 213–233 (1998)

  22. Gérard, P., Meyer, Y., Oru, F.: Inégalités de Sobolev précisées, (French., Séminaire sur les Équations aux Dérivées Partielles, 1996–1997, Exp. No. IV, École Polytech. Palaiseau (1997)

  23. Ginibre, J., Velo, G.: The global Cauchy problem for the nonlinear klein-gordon equation. Math. Z. 189(4), 487–505 (1985)

  24. Gressmann, P.T., Krieger, J., Strain, R.M.: A non-local inequality and global existence. Adv. Math 230, 642–648 (2012)

    Article  MathSciNet  Google Scholar 

  25. Keraani, S.: On the defect of compactness for the Strichartz estimates of the Schrödinger equations. J. Differ. Equ. 175, 353–392 (2001)

  26. Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57(2), 93–105 (1976/77)

  27. Lieb, E.H.: Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. Math. 118, 349–374 (1983)

  28. Lieb, E.H.: On the lowest eigenvalue of the Laplacian for the intersection of two domains. Invent. Math. 74, 441–448 (1983)

  29. Lieb, E.H., Loss, M.: Analysis. In: Graduate Studies in Mathematics, vol. 14. AMS, Providence (2001)

  30. Lieb, E.H., Oxford, S.: An improved lower bound on the indirect Coulomb energy. In. J. Quant. Chem. 19, 427–439 (1981)

  31. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. Ann. Inst. H. Poincar Anal. Non Linaire 1(2), 109–145, and (4), 223–283 (1984)

  32. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. Rev. Mat. Iberoamericana 1(1), 145–201, and (2), 45–121 (1985)

  33. Maz’ya, V., Shaposhnikova, T.: On pointwise interpolation inequalities for derivatives. Math. Bohem. 124, 131–148 (1999)

    MathSciNet  MATH  Google Scholar 

  34. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

  35. Nahas, J., Ponce, G.: On the persistent properties of solutions to semi-linear Schrödinger equation. Comm. PDE 34, 1–20 (2009)

  36. Palatucci, G., Pisante, A.: Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces. Calc. Var. PDE. doi:10.1007/s00526-013-0656-y

  37. Pausader, B., Shao, S.: The mass-critical fourth-order Schrödinger equation in high dimensions. J. Hyp. Differ. Equ. 7, 651–705 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Quilodran, R.: On extremizing sequences for the adjoint restriction inequality on the cone arXiv: 1108.6081

  39. Ruiz, D.: On the Schrödinger-Poisson-Slater system: behavior of minimizers, radial and nonradial cases. Arch. Rational Mech. Anal. 198(1), 349–368 (2010)

  40. Strauss, W.A.: Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55(2), 149–162 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  41. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 4, 353–372 (1976)

  42. Taylor, M.E.: Tools for PDE, Mathematical Surveys and Monographs, vol. 81. American Mathematical Society, Providence, RI (2000)

  43. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87(4), 567–576 (1983)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

FIRB2012 ‘Dinamiche dispersive: analisi di Fourier e metodi variazionali’ (J.B., N.V.) and PRIN2009 ‘Metodi Variazionali e Topologici nello Studio di Fenomeni non Lineari’ (J.B.) and U.S. National Science Foundation grants PHY-1068285 and PHY-1347399 (R.F.) are acknowledged. The authors would like to thank E. Lieb and G. Ponce for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Visciglia.

Appendix A: Proof of Proposition 2.1

Appendix A: Proof of Proposition 2.1

In this appendix we extend the method from [4] to derive Proposition 2.1. Let \(d\ge 1, s>0\) and \(0<\lambda <d\) be fixed. First note that if \(d>2s\) and \(p=d/(d-2s)\), then the claimed inequality is the Sobolev inequality.

Therefore, in the following we assume that \(p\ne d/(d-2s)\). Note that this implies, in particular, that \(\lambda \ne 4s\). A tedious but straightforward computation shows that the restriction on \(p\) in the proposition (in the case \(p\ne d/(d=2s)\)) is equivalent to the fact that

$$\begin{aligned} \theta = \frac{2d-2pd+p\lambda }{d-2ps-pd+p\lambda }. \end{aligned}$$
(7.1)

satisfies the bounds

$$\begin{aligned} \frac{d-\lambda }{d+2s -\lambda }\le \theta < 1. \end{aligned}$$
(7.2)

Note that \(\theta \) is always well-defined in \({\mathbb R}\cup \{\pm \infty \}\), since numerator and denominator do not vanish simultaneously (since \(\lambda \ne 4s\)).

We now recall a version of the fractional Gagliardo–Nirenberg inequality.

Lemma 6.3

Let \(p\in (1,\infty )\) and define \(\theta \) by (7.1). If \(\theta \) satisfies (7.2), then

$$\begin{aligned} \Vert D^{\frac{d-\lambda }{2}} \psi \Vert _{L^p}\le C \Vert \psi \Vert _{L^2}^{1-\theta } \Vert D^{s+\frac{d-\lambda }{2}} \psi \Vert _{L^\frac{2p}{p+1}}^\theta . \end{aligned}$$
(7.3)

If \(d<2s\), then (7.3) remains valid for \(p=\infty \).

For \(p<\infty \) this is explicitly stated in [35], but we use the opportunity to show how it can be deduced from the older results of [23]. As similar argument works for inequality (1.2). An advantage of our reduction to [23] is that it clearly shows why \(p=(d+4s-\lambda )/(d+2s-\lambda )\) is an endpoint.

Proof

The case \(p<\infty \) can be easily deduced from [23]. More precisely, for any \(1<p<\infty \) and any \(0\le \theta \le 1\), we have the convexity inequality

$$\begin{aligned} \Vert \psi \Vert _{L^2}^{1-\theta } \Vert D^{s+\frac{d-\lambda }{2}} \psi \Vert _{L^\frac{2p}{p+1}}^\theta \ge c \Vert D^{\theta (1+\frac{d-\lambda }{2})}\psi \Vert _{L^{\frac{2p}{p+\theta }}} \end{aligned}$$

with some \(c>0\) [23, Lemma A.1]. If \(p=(d+4s-\lambda )/(d+2s-\lambda )\), then \(\theta \) defined in (7.1) equals \((d-\lambda )/(d+2s-\lambda )\) and the lemma follows. Otherwise, for the choice (7.1) satisfying (7.2) we can apply [23, Lemma A.2] to deduce that

$$\begin{aligned} \Vert D^{\theta (1+\frac{d-\lambda }{2})}\psi \Vert _{L^{\frac{2p}{p+\theta }}} \ge c' \Vert D^{\frac{d-\lambda }{2}} \psi \Vert _{L^p}, \end{aligned}$$

which completes the proof of the lemma for \(p<\infty \).

If \(p=\infty \) and \(d<2s\), then by the Cauchy–Schwarz inequality

$$\begin{aligned} \left| D^{\frac{d-\lambda }{2}}\psi (x)\right|&= (2\pi )^{-d/2}\left| \ \int _{{\mathbb R}^d} |\xi |^{\frac{d-\lambda }{2}} e^{i\xi \cdot x} \hat{\psi }(\xi ) \,dx \right| \\&\le (2\pi )^{-d/2} \int _{|\xi |<R} |\xi |^{\frac{d-\lambda }{2}} |\hat{\psi }(\xi )| \,d\xi + (2\pi )^{-d/2} \int _{|\xi |\ge R} |\xi |^{\frac{d-\lambda }{2}} |\hat{\psi }(\xi )| \,d\xi \\&\le C_1 R^{\frac{2d-\lambda }{2}} \left( \ \int _{|\xi |<R} |\hat{\psi }(\xi )|^2 \,d\xi \right) ^{1/2}\\&\quad +C_2 R^{-\frac{2s-d}{2}} \left( \ \int _{|\xi |<R} |\xi |^{2s+d-\lambda } |\hat{\psi }(\xi )|^2 \,d\xi \right) ^{1/2} \\&\le C_1 R^{\frac{2d-\lambda }{2}} \Vert \psi \Vert _2 + C_2 R^{-\frac{2s-d}{2}} \Vert D^{s+\frac{d-\lambda }{2}} \psi \Vert _{L^2}. \end{aligned}$$

Optimizing in \(R\) yields the claimed inequality.\(\square \)

We combine Lemma 6.3 with the identity

$$\begin{aligned} \int \int _{{\mathbb R}^d\times {\mathbb R}^d} \frac{|\varphi (x)|^2 |\varphi (y)|^2}{|x-y|^{\lambda }}dxdy= C_{d,\lambda } \left\| D^{-\frac{d-\lambda }{2}} |\varphi |^2 \right\| _{L^2}^2 \end{aligned}$$

for some positive constant \(C_{d,\lambda }\), and obtain

$$\begin{aligned} \left\| \varphi \right\| _{L^{2p}}^2 = \left\| |\varphi |^2 \right\| _{L^p}&\le C \left\| D^{-\frac{d-\lambda }{2}}|\varphi |^2 \right\| _{L^2}^{1-\theta } \left\| D^{s} |\varphi |^2 \right\| _{L^\frac{2p}{p+1}}^\theta \\&= C C_{d,\lambda }^{-\frac{1-\theta }{2}} \left( \,\ \int \int _{{\mathbb R}^d\times {\mathbb R}^d} \frac{|\varphi (x)|^2 |\varphi (y)|^2}{|x-y|^{\lambda }}dxdy \right) ^{\frac{1-\theta }{2}} \left\| D^{s} |\varphi |^2 \right\| _{L^\frac{2p}{p+1}}^\theta . \end{aligned}$$

By the fractional chain-rule (see, e.g., [10]), this implies

$$\begin{aligned} \Vert \varphi \Vert _{L^{2p}}^2\le C' \left( \,\ \int \int _{{\mathbb R}^d\times {\mathbb R}^d} \frac{|\varphi (x)|^2 |\varphi (y)|^2}{|x-y|^{\lambda }}dxdy \right) ^{\frac{1-\theta }{2}} \left\| D^s \varphi \right\| _{L^2}^\theta \Vert \varphi \Vert _{L^{2p}}^{\theta }. \end{aligned}$$

(Strictly speaking, [10] contains only the case \(0<s<1\) and \(p<\infty \). A proof with \((1+D^2)^{1/2}\) instead of \(D\) is contained in [42, Prop. 1.1]; see also [20] and references therein for the general case.) To summarize, we have shown that

$$\begin{aligned} \Vert \varphi \Vert _{L^{2p}} \le \left( C'\right) ^{\frac{1}{2-\theta }} \left( \,\ \int \int _{{\mathbb R}^d\times {\mathbb R}^d} \frac{|\varphi (x)|^2 |\varphi (y)|^2}{|x-y|^{\lambda }}dxdy\right) ^{\frac{1-\theta }{4-2\theta }} \Vert \varphi \Vert _{\dot{H}^s}^\frac{\theta }{2-\theta }, \end{aligned}$$

which is the stated inequality.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellazzini, J., Frank, R.L. & Visciglia, N. Maximizers for Gagliardo–Nirenberg inequalities and related non-local problems. Math. Ann. 360, 653–673 (2014). https://doi.org/10.1007/s00208-014-1046-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-014-1046-2

Navigation