Skip to main content
Log in

On the field of definition of \(p\)-torsion points on elliptic curves over the rationals

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let \(S_\mathbb Q (d)\) be the set of primes \(p\) for which there exists a number field \(K\) of degree \(\le d\) and an elliptic curve \(E/\mathbb Q \), such that the order of the torsion subgroup of \(E(K)\) is divisible by \(p\). In this article we give bounds for the primes in the set \(S_\mathbb Q (d)\). In particular, we show that, if \(p\ge 11\), \(p\ne 13,37\), and \(p\in S_\mathbb Q (d)\), then \(p\le 2d+1\). Moreover, we determine \(S_\mathbb Q (d)\) for all \(d\le 42\), and give a conjectural formula for all \(d\ge 1\). If Serre’s uniformity problem is answered positively, then our conjectural formula is valid for all sufficiently large \(d\). Under further assumptions on the non-cuspidal points on modular curves that parametrize those \(j\)-invariants associated to Cartan subgroups, the formula is valid for all \(d\ge 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artin, E.: Algebraic Numbers and Algebraic Functions. American Mathematical Society Chelsea Publishing, Providence (2006)

  2. Bilu, Y., Parent, P.: Serre’s uniformity problem in the split Cartan case. Ann. Math. 173(1), 569–584 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bilu, Y., Parent, P., Rebolledo, M.: Rational points on \(X_0^+(p^r)\). arXiv:1104.4641v1

  4. Birch, B.J., Kuyk, W. (eds.): Modular Functions of One Variable IV. Lecture Notes in Mathematics, vol. 476. Springer, Berlin (1975)

    Google Scholar 

  5. Clark, P.L., Cook, B., Stankewicz, J.: Torsion points on elliptic curves with complex multiplication. Preprint

  6. Cojocaru, A.C.: On the surjectivity of the Galois representations associated to non-CM elliptic curves (with an appendix by Ernst Kani). Can. Math. Bull. 48, 16–31 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cojocaru, A.C., Hall, C.: Uniform results for Serre’s theorem for elliptic curves, Int. Math. Res. Not. 2005, 3065–3080 (2005)

  8. Daniels, H.: Siegel functions, modular curves, and Serre’s uniformity problem. Ph.D. thesis, University of Connecticut (in preparation)

  9. Derickx, M., Kamienny, S., Stein, W., Stoll, M.: Torsion points on elliptic curves over number fields of small degree (in preparation, private communication)

  10. Diamond, F., Shurman, J.: A First Course in Modular Forms. Graduate Texts in Mathematics, vol. 228, 2nd edn. Springer, New York (2005)

  11. Edixhoven, B.: Rational torsion points on elliptic curves over number fields (after Kamienny and Mazur). Séminaire Bourbaki, vol. 1993/94, Astérisque No. 227, Exp. No. 782, 4, 209–227 (1995)

  12. Elkies, N.: Elliptic and modular curves over finite fields and related computational issues. In: Buell, D.A., Teitelbaum, J.T. (eds.) Computational Perspectives on Number Theory: Proceedings of a Conference in Honor of A.O.L. Atkin, pp. 21–76. AMS/International Press, Providence (1998)

  13. Elkies, N.: Explicit Modular Towers. In: Basar, T., Vardy, A. (eds.) Proceedings of the Thirty-Fifth Annual Allerton Conference on Communication, Control and Computing, pp. 23–32. University of Illinois at Urbana-Champaign, Illinois (1998) (math.NT/0103107 on the arXiv)

  14. Gaudron, É., Rémond, G.: Théorème des périodes et degrés minimaux d’isogénies. Manuscript (2011). arXiv:1105.1230v1

  15. Fricke, R., Klein, F.: Vorlesungen über die Theorie der elliptischen Modulfunctionen, Vols. 1 and 2, p. 1892. B. G. Teubner, Leipzig (1890)

  16. Faltings, G.: The General Case of S. Lang’s Conjecture. Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991), pp. 175–182. Perspective in Mathematics, vol. 15. Academic Press, San Diego (1994)

  17. Frey, G.: Curves with infinitely many points of fixed degree. Israel J. Math. 85(1–3), 79–83 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fricke, R.: Die elliptischen Funktionen und ihre Anwendungen. Teubner, Leipzig (1922)

    MATH  Google Scholar 

  19. Fujita, Y.: Torsion subgroups of elliptic curves in elementary abelian 2-extensions of \({\mathbb{Q}}\). J. Number Theory 114, 124–134 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ishii, N.: Rational expression for J-invariant function in terms of generators of modular function fields. Int. Math. Forum 2(38), 1877–1894 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Kamienny, S., Mazur, B.: Rational torsion of prime order in elliptic curves over number fields. With an appendix by A. Granville. Columbia University Number Theory Seminar (New York, 1992). Astérisque No. 228, 3, 81–100 (1995)

  22. Kenku, M.A.: The modular curve \(X_0(39)\) and rational isogeny. Math. Proc. Cambridge Philos. Soc. 85, 21–23 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kenku, M.A.: The modular curves \(X_0(65)\) and \(X_0(91)\) and rational isogeny. Math. Proc. Camb. Philos. Soc. 87, 15–20 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kenku, M.A.: The modular curve \(X_0(169)\) and rational isogeny. J. Lond. Math. Soc. (2) 22, 239–244 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kenku, M.A.: The modular curve \(X_0(125)\), \(X_1(25)\) and \(X_1(49)\). J. Lond. Math. Soc. (2) 23, 415–427 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kenku, M.A.: On the number of \({\mathbb{Q}}\)-isomorphism classes of elliptic curves in each \({\mathbb{Q}}\)-isogeny class. J. Number Theory 15, 199–202 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kraus, A.: Une remarque sur les points de torsion des courbes elliptiques. C. R. Acad. Sci. Paris Ser. I Math. 321, 1143–1146 (1995)

    MathSciNet  MATH  Google Scholar 

  28. Kubert, S.D.: Universal bounds on the torsion of elliptic curves. Proc. Lond. Math. Soc. (3) 33, 193–237 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ligozat, G.: Courbes Modulaires de genre 1, pp. 1–80. Bull. Soc. Math. France, France (1975)

  30. Lozano-Robledo, Á., Lundell, B.: Bounds for the torsion of elliptic curves over extensions with bounded ramification. Int. J. Number Theory 6(6), 1293–1309 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Maier, R.: On rationally parametrized modular equations. J. Ramanujan Math. Soc. 24, 1–73 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Masser, D.W., Wüstholz, G.: Galois properties of division fields of elliptic curves. Bull. Lond. Math. Soc. 25, 247–254 (1993)

    Article  MATH  Google Scholar 

  33. Mazur, B.: Rational isogenies of prime degree. Invent. Math. 44, 129–162 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mazur, B., Vélu, J.: Courbes de Weil de conducteur 26. C. R. Acad. Sci. Paris Sér. A 275, 743–745 (1972)

  35. Mazur, B.: Rational points on modular curves (in [44]). In: Proceedings of Conference on Modular Functions held in Bonn. Lecture Notes in Mathematics, vol. 601, pp. 107–148. Springer, Berlin (1977)

  36. Merel, L.: Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math. 124(1–3), 437–449 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Momose, F.: Rational points on the modular curves \(X_{\text{ split}}(p)\). Compos. Math. 52, 115–137 (1984)

    MathSciNet  MATH  Google Scholar 

  38. Ogg, A.: Rational Points on Certain Elliptic Modular Curves. Proceedings of Symposia in Pure Mathematics, vol. XXIX, pp. 221–231. AMS, Providence (1973)

  39. Parent, P.: No \(17\)-torsion on elliptic curves over cubic number fields. Journal de Théorie des Nombres de Bordeaux 15, 831–838 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pellarin, F.: Sur une majoration explicite pour un degré d’isogénie liant deux courbes elliptiques. Acta Arith. 100, 203–243 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Prasad, D., Yogananda, C.S.: Bounding the torsion in CM elliptic curves. C. R. Math. Acad. Sci. Soc. R. Can. 23, 1–5 (2001)

    MathSciNet  MATH  Google Scholar 

  42. Rebolledo, M.: Module supersingulier et points rationnels des courbes modulaires. Thèse, Universié Pierre et Marie Curie (2004)

  43. Serre, J.-P.: Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15, 259–331 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  44. Serre, J.-P., Zagier, D.B. (eds.): Modular Functions of One Variable V: Proceedings International Conference. Lecture Notes in Mathematics, vol. 601. University of Bonn, Sonderforschungsbereich Theoretische Mathematik, 2–14 July 1976: No. V

  45. Serre, J.-P.: Points rationnels des courbes modulaires \(X_0(N)\). Seminaire Bourbaki, 1977/1978, No. 511

  46. Serre, J.-P.: Quelques applications du théorème de densité de Chebotarev. Publ. Math. IHES 54, 123–201 (1981)

    MATH  Google Scholar 

  47. Silverberg, A.: Torsion points on abelian varieties of CM-type. Compos. Math. 68(3), 241–249 (1988)

    MathSciNet  MATH  Google Scholar 

  48. Silverman, J.H.: The Arithmetic of Elliptic Curves, 2nd edn. Springer, New York (2009)

    Book  MATH  Google Scholar 

  49. Silverman, J.H.: Advanced Topics in the Arithmetic of Elliptic Curves. Springer, New York (1994)

Download references

Acknowledgments

This work was motivated by an earlier collaboration with Benjamin Lundell, where we described bounds on fields of definition in terms of ramification indices [30]. The author would like to thank Benjamin Lundell, Robert Pollack, Jeremy Teitelbaum, Ravi Ramakrishna, and the anonymous referee for their helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro Lozano-Robledo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lozano-Robledo, Á. On the field of definition of \(p\)-torsion points on elliptic curves over the rationals. Math. Ann. 357, 279–305 (2013). https://doi.org/10.1007/s00208-013-0906-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-013-0906-5

Keywords

Navigation