Skip to main content
Log in

Speed-up of combustion fronts in shear flows

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

This paper is concerned with the analysis of speed-up of reaction-diffusion-advection traveling fronts in infinite cylinders with periodic boundary conditions. The advection is a shear flow with a large amplitude and the reaction is nonnegative, with either positive or zero ignition temperature. The unique or minimal speeds of the traveling fronts are proved to be asymptotically linear in the flow amplitude as the latter goes to infinity, solving an open problem from Berestycki (Nonlinear PDEs in condensed matter and reactive flows, Kluwer, Doordrecht, 2003). The asymptotic growth rate is characterized explicitly as the unique or minimal speed of traveling fronts for a limiting degenerate problem, and the convergence of the regular traveling fronts to the degenerate ones is proved for positive ignition temperatures under an additional Hörmander-type condition on the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For \(\zeta =(\zeta _1,\ldots ,\zeta _{N-1})\in \mathbb{N }^{N-1}\), we let \(|\zeta |=\zeta _1+\cdots +\zeta _{N-1}\) and \(D^{\zeta }\alpha (y)=\frac{\partial ^{|\zeta |}\alpha }{\partial y_1^{\zeta _1}\cdots \partial y_{N-1}^{\zeta _{N-1 }}}(y)\).

References

  1. Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusions arising in population genetics. Adv. Math. 30, 33–76 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  2. Audoly, B., Berestycki, H., Pomeau, Y.: Réaction-diffusion en écoulement stationnaire rapide. C. R. Acad. Sci. Paris Ser. II 328, 255–262 (2000)

    MATH  Google Scholar 

  3. Bages, M., Martinez, P., Roquejoffre, J.-M.: How travelling waves attract the solutions of KPP equations. Trans. Amer. Math. Soc. 364, 5415–5468 (2012)

    Article  MathSciNet  Google Scholar 

  4. Berestycki, H.: The influence of advection on the propagation of fronts in reaction-diffusion equations. In: Berestycki, H., Pomeau, Y. (eds.) Nonlinear PDEs in Condensed Matter and Reactive Flows, NATO Science Series C, 569. Kluwer, Doordrecht (2003)

    Google Scholar 

  5. Berestycki, H., Hamel, F.: Front propagation in periodic excitable media. Comm. Pure Appl. Math. 55, 949–1032 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berestycki, H., Hamel, F.: Gradient estimates for elliptic regularizations of semilinear parabolic and degenerate elliptic equations. Comm. Part. Diff. Equ. 30, 139–156 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berestycki, H., Hamel, F.: Reaction-diffusion equations and propagation phenomena. Applied Mathematical Sciences, Springer, Berlin (to appear)

  8. Berestycki, H., Hamel, F., Nadirashvili, N.: Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena. Comm. Math. Phys. 253, 451–480 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berestycki, H., Hamel, F., Nadirashvili, N.: The speed of propagation for KPP type problems. I-eriodic framework. J. Europ. Math. Soc. 7, 173–213 (2005)

    Google Scholar 

  10. Berestycki, H., Hamel, F., Roques, L.: Analysis of the periodically fragmented environment model: II-Biological invasions and pulsating traveling fronts. J. Math. Pures Appl. 84, 1101–1146 (2005)

    Google Scholar 

  11. Berestycki, H., Larrouturou, B., Lions, P.-L.: Multidimensional traveling-wave solutions of a flame propagation model. Arch. Ration. Mech. Anal. 111, 33–49 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Berestycki, H., Larrouturou, B., Roquejoffre, J.-M.: Stability of traveling fronts in a curved flame model, Part I: linear analysis. Arch. Ration. Mech. Anal. 117, 97–117 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Berestycki, H., Nirenberg, L.: On the method of moving planes and the sliding method. Bol. Soc. Bras. Mat. 22, 1–37 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Berestycki, H., Nirenberg, L.: Traveling fronts in cylinders. Ann. Inst. H. Poincaré. Anal. Non Lin. 9, 497–572 (1992)

    MathSciNet  MATH  Google Scholar 

  15. Constantin, P., Kiselev, A., Oberman, A., Ryzhik, L.: Bulk burning rate in passive-reactive diffusion. Arch. Ration. Mech. Anal. 154, 53–91 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. El Smaily, M.: Pulsating traveling fronts: asymptotics and homogenization regimes. Europ. J. Appl. Math. 19, 393–434 (2008)

    Article  MATH  Google Scholar 

  17. El Smaily, M.: Min-max formulæ for the speeds of pulsating traveling fronts in periodic excitable media. Ann. Mat. Pura Appl. 189, 47–66 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. El Smaily, M., Kirsch, S.: The speed of propagation for KPP reaction-diffusion equations within large drift. Adv. Diff. Equ. 6, 361–400 (2011)

    Google Scholar 

  19. Fannjiang, A., Papanicolaou, G.: Convection enhanced diffusion for periodic flows. SIAM J. Appl. Math. 54, 333–408 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fife, P.C.: Mathematical aspects of reacting and diffusing systems. Lecture Notes in Biomathematics. Springer, Berlin (1979)

  21. Hamel, F.: Formules min-max pour les vitesses d’ondes progressives multidimensionnelles. Ann. Fac. Sci. Toulouse 8, 259–280 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hamel, F.: Qualitative properties of KPP and monostable fronts: monotonicity and exponential decay. J. Math. Pures Appl. 89, 355–399 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Hamel, F., Roques, L.: Uniqueness and stability properties of monostable pulsating fronts. J. Europ. Math. Soc. 13, 345–390 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hamel, F., Zlatoš, A.: The Harnack inequality for a class of degenerate elliptic operators. Int. Res. Math. Notices (2012)

  25. Heinze, S.: Large convection limits for KPP fronts. Preprint, Heidelberg (2005)

  26. Heinze, S., Papanicolaou, G., Stevens, A.: Variational principles for propagation speeds in inhomogeneous media. SIAM J. Appl. Math. 62, 129–148 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kanel’, Ya I.: Stabilization of solution of the Cauchy problem for equations encountred in combustion theory. Mat. Sbornik 59, 245–288 (1962)

    MathSciNet  Google Scholar 

  28. Kiselev, A., Ryzhik, L.: Enhancement of the traveling front speeds in reaction-diffusion equations with advection. Ann. Inst. H Poincaré, Analyse Non Lin. 18, 309–358 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kolmogorov, A.N., Petrovsky, I.G., Piskunov, N.S.: Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. Univ. État Moscou. Bull. Univ. État Moscou. Sér. Internationale A 1, 1–26 (1937)

    Google Scholar 

  30. Mallordy, J.-F., Roquejoffre, J.-M.: A parabolic equation of the KPP type in higher dimensions. SIAM J. Math. Anal. 26, 1–20 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Murray, J.D.: Mathematical biology. Springer, Berlin (2003)

    MATH  Google Scholar 

  32. Novikov, A., Ryzhik, L.: Boundary layers and KPP fronts in a cellular flow. Arch. Ration. Mech. Anal. 184, 23–48 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Roquejoffre, J.-M.: Stability of traveling fronts in a curved flame model, Part II: non-linear orbital stability. Arch. Ration. Mech. Anal. 117, 119–153 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Roquejoffre, J.-M.: Eventual monotonicity and convergence to traveling fronts for the solutions of parabolic equations in cylinders. Ann. Inst. H. Poincaré. Anal. Non Lin. 14, 499–552 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rothschild, L.P., Stein, E.M.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137, 247–320 (1976)

    Article  MathSciNet  Google Scholar 

  36. Ryzhik, L., Zlatoš, A.: KPP pulsating front speed-up by flows. Comm. Math. Sci. 5, 575–593 (2007)

    MATH  Google Scholar 

  37. Shigesada, N., Kawasaki, K.: Biological invasions: theory and practice, Oxford series in ecology and evolution. Oxford Univ. Press., Oxford (1997)

    Google Scholar 

  38. Stroock, D.W., Varadhan, S.R.S.: On the support of diffusion processes with applications to the strong maximum principle. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol. III, probability theory, University of California Press, Berkeley, pp. 333–359 (1972)

  39. Vega, J.M.: On the uniqueness of multidimensional traveling fronts of some semilinear equations. J. Math. Anal. Appl. 177, 481–490 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  40. Weinberger, H.F.: On spreading speeds and traveling waves for growth and migration in periodic habitat. J. Math. Biol. 45, 511–548 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xin, X.: Existence of planar flame fronts in convective-diffusive periodic media. Arch. Ration. Mech. Anal. 121, 205–233 (1992)

    Article  MATH  Google Scholar 

  42. Xin, J.: Existence and nonexistence of travelling waves and reaction-diffusion front propagation in periodic media. J. Stat. Phys. 73, 893–926 (1993)

    Article  MATH  Google Scholar 

  43. Xin, J.X.: Analysis and modeling of front propagation in heterogeneous media. SIAM Review 42, 161–230 (2000)

    Article  MathSciNet  Google Scholar 

  44. Zlatoš, A.: Reaction-diffusion front speed enhancement by flows. Ann. Inst. H. Poincaré Anal. Non Linéaire 28, 711–726 (2011)

    Article  MATH  Google Scholar 

  45. Zlatoš, A.: Sharp asymptotics for KPP pulsating front speed-up and diffusion enhancement by flows. Arch. Ration. Mech. Anal. 195, 441–453 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zlatoš, A.: Generalized traveling waves in disordered media: existence, uniqueness, and stability. Preprint. (2009). http://arxiv.org/abs/0901.2369

Download references

Acknowledgments

We thank Tom Kurtz and Daniel Stroock for useful discussions and pointers to references. FH is indebted to the Alexander von Humboldt Foundation for its support. His work was also supported by the French Agence Nationale de la Recherche through the project PREFERED. AZ was supported in part by NSF grants DMS-1113017 and DMS-1056327, and by an Alfred P. Sloan Research Fellowship. Part of this work was carried out during visits by FH to the Departments of Mathematics of the Universities of Chicago and Wisconsin and by AZ to the Faculté des Sciences et Techniques, Aix-Marseille Université, the hospitality of which is gratefuly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Hamel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamel, F., Zlatoš, A. Speed-up of combustion fronts in shear flows. Math. Ann. 356, 845–867 (2013). https://doi.org/10.1007/s00208-012-0877-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0877-y

Keywords

Navigation