Skip to main content
Log in

Moment maps of the spin action and the Cartan–Münzner polynomials of degree four

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We express all the known Cartan–Münzner polynomials of degree four in terms of the moment map of certain group actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M.F., Bott, R., Shapiro, A.: Clifford modules. Topology 3, 3–38 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cartan, É.: Familles de surfaces isoparamétriques dan les espaces à courbure constante. Ann. Mat. 17, 177–191 (1938)

    Article  MathSciNet  Google Scholar 

  3. Cecil, T., Chi, Q.S., Jensen, G.: Isoparametric hypersurfaces with four principal curvatures. Ann. Math. 166, 1–76 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chi, Q.S.: Isoparametric hypersurfaces with four principal curvatures revisited. Nagoya Math. J. 193, 129–154 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Chi, Q.S.: Isoparametric hypersurfaces with four principal curvatures. II. Nagoya Math. J. 204, 1–18 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Chi, Q.S.: A new look at Condition A. Osaka J. Math. (2012, to appear)

  7. Chi, Q.S.: Isoparametric hypersurfaces with four principal curvatures, III, mathDG/1104.3249v3 (2011)

  8. Dorfmeister, J., Neher, E.: Isoparametric hypersufaces, case \(g=6,\quad m=1\). Commun. Algebra 13, 2299–2368 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ferapontov, E.: Isoparametric hypersurfaces in spheres, integrable nondiagonalizable systems of hydrodynamic type, and N-wave systems. Diff. Geom. Appl. 5(4), 335–369 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ferus, D., Karcher, H., Münzner, H.F.: Cliffordalgebren und neue isoparametrische Hyperflächen. Math. Z. 177, 479–502 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fujii, S.: Homogeneous isoparametric hypersurfaces in spheres with four distinct principal curvatures and moment maps. Tohoku Math. J. 62, 191–213 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fujii, S., Tamaru, H.: Moment maps and isoparametric hypersurfaces in spheres—Hermitian case (2011, in preparation)

  13. Hsiang, W.Y., Lawson, B.: Minimal submanifolds of low cohomogeneity. J. Diff. Geom. 5, 1–38 (1971)

    MathSciNet  MATH  Google Scholar 

  14. Immervoll, S.: The classification of isoparametric hypersurfaces with four distinct principal curvatures. Ann. of Math. 168, 1011–1024 (2008)

    Google Scholar 

  15. Ishikawa, G., Kimura, M., Miyaoka, R.: Submanifolds with degenerating Gauss mapping in spheres. Adv. Stud. Pure Math. 37, 115–149 (2002)

    MathSciNet  Google Scholar 

  16. Miyaoka, R.: Geometry of \(G_2\) orbits and isoparametric hypersurfaces. Nagoya Math. J. 203, 175–189 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Miyaoka, R.: The Dorfmeister–Neher theorem on isoparametric hypersurfaces. Osaka J. Math. 46, 695–715 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Miyaoka, R.: Isoparametric hypersurfaces with \((g, m)=(6,2)\). Ann. Math. 176(3) (2012, to appear). http://annals.math.princeton.edu/toappear

  19. Münzner, M.F.: Isoparametrische hyperflächen in sphären, I. Math. Ann. 251, 57–71 (1980)

    Google Scholar 

  20. Münzner, M.F.: Isoparametrische hyperflächen in sphären, II. Math. Ann. 256, 215–232 (1981)

    Google Scholar 

  21. Ohnita, Y.: Moment map and symmetric Lagrangian submanifolds. In: Proceedings of the submanifolds in Yuzawa 2004 (2005), pp. 33–38

  22. Ozeki, H., Takeuchi, M.: On some types of isoparametric hypersurfaces in spheres II. Tohoku Math. J. 28, 7–55 (1976)

    Article  MATH  Google Scholar 

  23. Thorbergsson, G.: A survey on isoparametric hypersurfaces and their generalizations, Handbook of Differential Geometry I: 963–995. North-Holland, Amsterdam (2000)

    Google Scholar 

  24. Takagi, R., Takahashi, T.: On the principal curvatures of homogeneous hypersurfaces in a sphere. Differential Geometry, pp. 469–481. Kinokuniya, Tokyo (1972) (in honor of K. Yano)

  25. Wang, Q.M.: Isoparametric functions on Riemannian manifolds, I. Math. Ann. 277, 639–646 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiko Miyaoka.

Additional information

Partially supported by Grants-in-Aid for Scientific Research, 19204006, The Ministry of Education, Japan.

Appendix

Appendix

For hypersurfaces of OT-FKM type which are at the same time isotropy orbits of Hermitian symmetric spaces, we give a relation between the matrix expression in [11] and the argument in Sect. 6.

In the case of Hermitian symmetric space \(SO(2+n)/SO(2)\times SO(n)\), we have

$$\begin{aligned} \begin{array}{ll} {\mathfrak k }=\left\{ \begin{pmatrix}A&0\\ 0&A^{\prime }\end{pmatrix}, \,A\in {\mathfrak o }(2),\,A^{\prime }\in {\mathfrak o }(n)\right\} ,\\ {\mathfrak p }=\left\{ \begin{pmatrix}0&V\\ -{}^tV&0\end{pmatrix}, \,V\in M_{2,n}({\mathbb R })\right\} , \end{array} \end{aligned}$$

and from \(\dim {\mathfrak p }=2n\), \(n=l\) holds in Sect. 5. We may consider an element \(H(\xi _1,\xi _2)\in {\mathfrak a }\) which corresponds to

$$\begin{aligned} V=\begin{pmatrix}\xi _1&0&\ldots&0\\ 0&\xi _2&\ldots&0\end{pmatrix},\quad \xi _1,\xi _2\in {\mathbb R }. \end{aligned}$$

Namely, with respect to an orthonormal basis \(e_1,\ldots , e_l\) of \({\mathbb R }^l\), take a double copy \({\mathbb R }^l\oplus {\mathbb R }^l\) consisting of \(\pm 1\) eigenspaces of \(P_0\). We may consider \(H=(\xi _1e_1,\xi _2e_2)\in {\mathfrak a }\subset {\mathbb R }^l\oplus {\mathbb R }^l\). Since we can use \(P_0,P_1\) with respect to this decomposition (ark 6.2), \(P_0H=(\xi _1e_1,-\xi _2e_2)\) and \(P_1H=(\xi _2e_2,\xi _1e_1)\) follow, and hence \(\langle P_0H,H\rangle =\xi _1^2-\xi _2^2\) and \(\langle P_1H,H\rangle =0\) hold, which implies \(Y_H=P_1H\). Because \(m=1\), it follows that

$$\begin{aligned} \Vert H\Vert ^2=\Vert P_1H\Vert ^2=\xi _1^2+\xi _2^2,\quad \Vert \mu (H,Y_H)\Vert ^2=\langle P_0H,H\rangle ^2=(\xi _1^2-\xi _2^2)^2, \end{aligned}$$

and from our result (3), we obtain

$$\begin{aligned} \begin{array}{ll} F(H)&=\Vert H\Vert ^4-2\Vert \mu (H,Y_H)\Vert ^2\\&=(\xi _1^2+\xi _2^2)^2-2(\xi _1^2-\xi _2^2)^2\\&=3(\xi _1^2+\xi _2^2)^2-4(\xi _1^4+\xi _2^4). \end{array} \end{aligned}$$

This is nothing but (4.4) in [22], and (4.9) in [11] multiplied by \(\frac{8}{n}\).

The case of \(SU(2+n)/S(U(2)\times U(n))\) is similarly discussed, where from \(m=2\), \(P_0P_1,P_1P_2,P_2P_0\) generate \({\mathfrak s }{\mathfrak u }(2)\), and we may put \(P_2(u,v)=(\sqrt{-1}v,-\sqrt{-1}u)\), and \(\langle P_2(u,v),(u,v)\rangle =0\) follows. Thus we obtain the same \(F(x)\) as above, which coincides with (4.4) in [22].

In the case of \(E_6/U(1)\times Spin(10)\), we know \((m_1,m_2)=(9,6)\), and the spin action on \({\mathfrak p }\cong {\mathbb R }^{32}\) in Sect. 6 coincides with the isotropy action of \(Spin(10)\). In fact, by the argument in 6.3 of [10], \(P_iP_jx\), \((i,j)=(0,1), (2,3), (1,2i), (1,2i+1), (0,2i),(0,2i+1)\) for \(1\le i\le 4\), and \((2i,2j)\) \((2i,2j+1)\) for \(1\le i< j\le 4\) span the 30 linearly independent Killing fields on the hypersurface, and hence the action is transitive. Up to now, [12] is not yet at hand, and so Theorem 1.2 gives the unique expression of this case in terms of the moment map \(\mu \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyaoka, R. Moment maps of the spin action and the Cartan–Münzner polynomials of degree four. Math. Ann. 355, 1067–1084 (2013). https://doi.org/10.1007/s00208-012-0819-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0819-8

Mathematics Subject Classification

Navigation