Skip to main content
Log in

A perturbation method for spinorial Yamabe type equations on \(S^m\) and its application

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

For \(m\ge 2\), we prove the existence of non-trivial solutions for a certain kind of nonlinear Dirac equations with critical Sobolev nonlinearities on \(S^m\) via a perturbative variational method. For the special case \(m=2\), this establishes the existence of a conformal immersion \(S^2\rightarrow \mathbb R ^3\) with prescribed mean curvature \(H\) which is close to a positive constant under an index counting condition on \(H\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Ambrosetti, A., Badiale, M.: Homoclinics: Poincaré-Melnikov type results via a variational approach. Ann. Inst. H. Poincaré Anal. Nonlinéaire 15, 233–252 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosetti, A., Badiale, M.: Variational perturbative methods and bifurcation of bound states from the essential spectrum. Proc. R. Soc. Edinburgh Sect. A 128, 1131–1161 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosetti, A., Garcia, A.J.: Perturbation of \(\Delta u+u^{N+2/N-2}=0\), the scalar curvature problem in \(\mathbb{R}^N\), and related topics. J. Funct. Anal. 165, 117–149 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosetti, A., Malchiodi, A.: Perturbation methods and semilinear elliptic problems on \(\mathbb{R}^n\). In: Progress in Mathematics, vol. 240. Birkhäuser, Basel (2006)

  6. Ammann, B.: A spin-conformal lower bound of the first positive Dirac eigenvalue. Diff. Geom. Appl. 18, 21–32 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ammann, B.: A variational problem in conformal spin geometry. Universität Hamburg, Habilitationsschift (2003)

    Google Scholar 

  8. Ammann, B.: The smallest Dirac eigenvalue in a spin-conformal class and cmc-immersions. Commun. Anal. Geom. 17, 429–479 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Ammann, B., Humbert, E., Grosjean, J.-F.: Mass endomorphism and spinorial Yamabe type problem on conformally flat manifolds. Commun. Anal. Geom. 14, 163–182 (2006)

    MATH  Google Scholar 

  10. Ammann, B., Humbert, E., Ahmedou, M.O.: An obstruction for the mean curvature of a conformal immersion \(S^n\rightarrow \mathbb{R}^{n+1}\). Proc. AMS. 135, 489–493 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Anderson, M.: Conformal immersions of prescribed mean curvature in \(\mathbb{R}^3\). arXiv:1204.5225

  12. Atiyah, M.F., Bott, R.: The Yang-Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond. Ser. A 308, 523–615 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Aubin, T.: Some nonlinear problems in Riemannian geometry. In: Springer Monographs in Mathematics. Springer, Berlin (1998)

  14. Bahri, A., Coron, J.M.: The scalar curvature problem on the standard three-dimensional sphere. J. Funct. Anal. 95, 106–172 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bott, R.: Nondegenerate critical manifolds. Ann. Math. 60(2), 248–261 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bourguignon, J.-P., Ezin, J.P.: Scalar curvature functions in a conformal class of metrics and conformal transformations. Trans. Am. Math. Soc. 301, 723–736 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Banyaga, A., Hurtubise, D.: Lectures on Morse homology. In: Texts in the Mathematical Sciences. Kluwer, Dordrecht (2005)

  18. Chang, K.L.: Infinite dimensional Morse theory and multiple solution problems. Prog. Nonlinear Diff. Equ. Appl. 6 (2006)

  19. Chang, S.-Y.A.: Non-linear elliptic equations in conformal geometry. In: Zurich Lectures in Advanced Mathematics. EMS, San Francisco (2004)

  20. Chavel, I.: Eigenvalues in Riemannian geometry. In: Pure and Applied Mathematics, vol. 115. Academic Press, London (1984)

  21. Chen, Q., Jost, J., Wang, G.: Nonlinear Dirac equations on Riemann surfaces. Ann. Global Anal. Geom. 33, 253–270 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chang, S.Y.A., Yang, P.: A perturbation result in prescribing scalar curvature on \(S^n\). Duke Math. J. 64, 27–69 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chang, S.-Y.A., Gursky, M., Yang, P.: The scalar curvature equation on 2- and 3-spheres. Calc. Var. 1, 205–229 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dahlberg, B.: The converse of the four vertex theorem. Proc. Am. Math. Soc. 133, 2131–2135 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. DeTurck, D., Gluck, H., Pomerleano, D., Shea, V.D.: The four vertex theorem and its converse. Not. AMS 54, 192–207 (2007)

    MATH  Google Scholar 

  26. Friedrich, T.: On the spinor representation of surfaces in Euclidean 3-space. J. Geom. Phys. 28, 143–157 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Friedrich, T.: Dirac operators in Riemannian geometry. In: Graduate Studies in Mathematics, vol. 25. American Mathematical Society, New York (2000)

  28. Ginoux, N.: The Dirac spectrum. In: Lecture Notes in Mathematics, vol. 1976. Springer, Berline (2009)

  29. Hitchin, N.: Harmonic spinors. Adv. Math. 14, 1–55 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  30. Isobe, T.: Existence results for solutions to nonlinear Dirac equations on compact spin manifolds. Manuscr. Math. 135, 329–360 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Isobe, T.: Nonlinear Dirac equations with critical nonlinearities on compact spin manifolds. J. Funct. Anal. 260, 253–307 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Isobe, T.: Spinorial Yamabe type equations on \(S^m\) via Conley index (2012) (preprint)

  33. Kusner, R., Schmitt, N.: The spinor representation of surfaces in space. dg-ga/9610005.

  34. Kazdan, J., Warner, F.: Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvature. Ann. Math. 101, 317–331 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, Y.Y.: Prescribing scalar curvature on \(S^3\), \(S^4\) and related problems. J. Funct. Anal. 118, 43–118 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, Y.Y.: Prescribing scalar curvature on \(S^n\) and related topics, Part I. J. Differ. Eq. 120, 319–410 (1995)

    Article  MATH  Google Scholar 

  37. Li, Y.Y.: Prescribing scalar curvature on \(S^n\) and related topics, Part II. Commun. Pure Appl. Math. 49, 437–477 (1996)

    Article  Google Scholar 

  38. Lawson, H.B., Michelson, M.: Spin Geometry. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  39. Malchiodi, A.: The scalar curvature problem on \(S^n\): an approach via Morse theory. Calc. Var. 14, 429–445 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Morse, M., Van Schaak, G.: The critical point theory under general boundary conditions. Ann. Math. 35, 545–571 (1934)

    Article  Google Scholar 

  41. Raulot, S.: A Sobolev-like inequality for the Dirac operator. J. Funct. Anal. 26, 1588–1617 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

I would like to express my gratitude to the anonymous referee for drawing my attention to the four vertex theorem and the recent result of M. Anderson [11]. He also gave me a lot of helpful suggestions that made this paper much easier to read.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Isobe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isobe, T. A perturbation method for spinorial Yamabe type equations on \(S^m\) and its application. Math. Ann. 355, 1255–1299 (2013). https://doi.org/10.1007/s00208-012-0818-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0818-9

Mathematics Subject Classification (2000)

Navigation