Skip to main content
Log in

Absolutely minimal Lipschitz extension of tree-valued mappings

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove that every Lipschitz function from a subset of a locally compact length space to a metric tree has a unique absolutely minimal Lipschitz extension (AMLE). We relate these extensions to a stochastic game called Politics—a generalization of a game called Tug of War that has been used in Peres et al. (J Am Math Soc 22(1):167–210, 2009) to study real-valued AMLEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almansa A., Cao F., Gousseau Y., Rouge B.: Interpolation of digital elevation models using AMLE and related methods. IEEE Trans. Geosci. Remote Sens. 40(2), 314–325 (2002)

    Article  Google Scholar 

  2. Armstrong S.N., Smart C.K.: An easy proof of Jensen’s theorem on the uniqueness of infinity harmonic functions. Calc. Var. Partial Differ. Equ. 37(3–4), 381–384 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aronsson G.: Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6, 551–561 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aronsson G., Crandall M.G., Juutinen P.: A tour of the theory of absolutely minimizing functions. Bull. Am. Math. Soc. (N.S.), 41(4), 439–505 (2004) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ball K.: Markov chains, Riesz transforms and Lipschitz maps. Geom. Funct. Anal. 2(2), 137–172 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barles G., Busca J.: Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term. Commun. Partial Differ. Equ. 26(11–12), 2323–2337 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benyamini Y., Lindenstrauss J.: Geometric Nonlinear Functional Analysis, vol. 1. American Mathematical Society Colloquium Publications, vol. 48. American Mathematical Society, Providence (2000)

    Google Scholar 

  8. Brudnyi A., Brudnyi Y.: Linear and nonlinear extensions of Lipschitz functions from subsets of metric spaces. Algebra i Analiz 19(3), 106–118 (2007)

    MathSciNet  Google Scholar 

  9. Brudnyi Y., Shvartsman P.: Stability of the Lipschitz extension property under metric transforms. Geom. Funct. Anal. 12(1), 73–79 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Caselles V., Haro G., Sapiro G., Verdera J.: On geometric variational models for inpainting surface holes. Comput. Vis. Image Underst. 111(3), 351–373 (2008)

    Article  Google Scholar 

  11. Caselles V., Morel J.-M., Sbert C.: An axiomatic approach to image interpolation. IEEE Trans. Image Process. 7(3), 376–386 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Champion T., De Pascale L.: Principles of comparison with distance functions for absolute minimizers. J. Convex Anal. 14(3), 515–541 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Crandall M.G., Evans L.C., Gariepy R.F.: Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. Partial Differ. Equ. 13(2), 123–139 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Dress A.: Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces. Adv. Math. 53(3), 321–402 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dress, A., Moulton, V., Terhalle, W.: T-theory: an overview. Eur. J. Combin. 17(2–3):161–175 (1996) [discrete metric spaces (Bielefeld, 1994)]

    Google Scholar 

  16. Isbell J.R.: Six theorems about injective metric spaces. Comment. Math. Helv. 39, 65–76 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jensen R.: Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Arch. Ration. Mech. Anal. 123(1), 51–74 (1993)

    Article  MATH  Google Scholar 

  18. Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. In: Conference in Modern Analysis and Probability (New Haven, Conn., 1982). Contemporary Mathematics, vol. 26, pp. 189–206. American Mathematical Society, Providence (1984)

  19. Johnson W.B., Lindenstrauss J., Preiss D., Schechtman G.: Lipschitz quotients from metric trees and from Banach spaces containing l 1. J. Funct. Anal. 194(2), 332–346 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Johnson W.B., Lindenstrauss J., Schechtman G.: Extensions of Lipschitz maps into Banach spaces. Israel J. Math. 54(2), 129–138 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Juutinen P.: Absolutely minimizing Lipschitz extensions on a metric space. Ann. Acad. Sci. Fenn. Math. 27(1), 57–67 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Kalton N.J.: Extending Lipschitz maps into \({\fancyscript{C}(K)}\) -spaces. Israel J. Math. 162, 275–315 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Khuê N.V., Nhu N.T.: Lipschitz extensions and Lipschitz retractions in metric spaces. Colloq. Math. 45(2), 245–250 (1981)

    MathSciNet  MATH  Google Scholar 

  24. Kirszbraun M.D.: Über die zusammenziehenden und Lipschitzchen Transformationen. Fundam. Math. 22, 77–108 (1934)

    Google Scholar 

  25. Lang U., Pavlović B., Schroeder V.: Extensions of Lipschitz maps into Hadamard spaces. Geom. Funct. Anal. 10(6), 1527–1553 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lang U., Schlichenmaier T.: Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions. Int. Math. Res. Not. (58), 3625–3655 (2005)

    Article  MathSciNet  Google Scholar 

  27. Lang U., Schroeder V.: Kirszbraun’s theorem and metric spaces of bounded curvature. Geom. Funct. Anal. 7(3), 535–560 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lazarus A.J., Loeb D.E., Propp J.G., Stromquist W.R., Ullman D.H.: Combinatorial games under auction play. Games Econ. Behav. 27(2), 229–264 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Le Gruyer E.: On absolutely minimizing Lipschitz extensions and PDE Δ(u) = 0. NoDEA Nonlinear Differ. Equ. Appl. 14(1–2), 29–55 (2007)

    MathSciNet  MATH  Google Scholar 

  30. Lee J.R., Naor A.: Extending Lipschitz functions via random metric partitions. Invent. Math. 160(1), 59–95 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lindenstrauss J.: On nonlinear projections in Banach spaces. Mich. Math. J. 11, 263–287 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  32. Marcus M.B., Pisier G.: Characterizations of almost surely continuous p-stable random Fourier series and strongly stationary processes. Acta Math. 152(3–4), 245–301 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  33. Martin D.A.: The determinacy of Blackwell games. J. Symb. Log. 63(4), 1565–1581 (1998)

    Article  MATH  Google Scholar 

  34. McShane E.J.: Extension of range of functions. Bull. Am. Math. Soc. 40(12), 837–842 (1934)

    Article  MathSciNet  Google Scholar 

  35. Mémoli, F., Sapiro, G., Thompson, P.: Geometric surface and brain warping via geodesic minimizing Lipschitz extensions. In: MFCA-2006 International Workshop on Mathematical Foundations of Computational Anatomy (MICCAI), pp. 58–67 (2006)

  36. Mendel M., Naor A.: Some applications of Ball’s extension theorem. Proc. Am. Math. Soc. 134(9), 2577–2584 (2006) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mil’man V.A.: Absolutely minimal extensions of functions on metric spaces. Mat. Sb. 190(6), 83–110 (1999)

    Article  MathSciNet  Google Scholar 

  38. Munkres J.R.: Topology: a First Course. Prentice-Hall, Englewood Cliffs (1975)

    MATH  Google Scholar 

  39. Naor A.: A phase transition phenomenon between the isometric and isomorphic extension problems for Hölder functions between L p spaces. Mathematika 48(1–2), 253–271 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Naor A., Peres Y., Schramm O., Sheffield S.: Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces. Duke Math. J. 134(1), 165–197 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Neyman, A., Sorin, S. (eds): Stochastic Games and Applications. NATO Science Series C: Mathematical and Physical Sciences, vol. 570. Kluwer, Dordrecht (2003)

    Google Scholar 

  42. Peres Y., Schramm O., Sheffield S., Wilson D.B.: Tug-of-war and the infinity Laplacian. J. Am. Math. Soc. 22(1), 167–210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Przesławski K., Yost D.: Lipschitz retracts, selectors, and extensions. Mich. Math. J. 42(3), 555–571 (1995)

    Article  MATH  Google Scholar 

  44. Sheffield, S., Smart, C.: Vector-valued optimal Lipschitz extensions. Preprint (2010)

  45. Valentine F.A.: Contractions in non-Euclidean spaces. Bull. Am. Math. Soc. 50, 710–713 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  46. Valentine F.A.: A Lipschitz condition preserving extension for a vector function. Am. J. Math. 67, 83–93 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wells, J.H., Williams, L.R.: Embeddings and Extensions in Analysis. Springer, New York (1975) (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 84)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assaf Naor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naor, A., Sheffield, S. Absolutely minimal Lipschitz extension of tree-valued mappings. Math. Ann. 354, 1049–1078 (2012). https://doi.org/10.1007/s00208-011-0753-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-011-0753-1

Keywords

Navigation