Skip to main content
Log in

The Frölicher spectral sequence can be arbitrarily non-degenerate

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

An Erratum to this article was published on 22 January 2014

Abstract

The Frölicher spectral sequence of a compact complex manifold X measures the difference between Dolbeault cohomology and de Rham cohomology. If X is Kähler then the spectral sequence collapses at the E 1term and no example with d n  ≠  0 for n > 3 has been described in the literature.We construct for n ≥  2 nilmanifolds with left-invariant complex structure X n such that the n-th differential d n does not vanish. This answers a question mentioned in the book of Griffiths and Harris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bott, R., Tu, L.W.: Differential forms in algebraic topology. In: Graduate Texts in Mathematics, vol. 82. Springer, New York (1982)

    Google Scholar 

  2. Catanese, F.: Deformation in the large of some complex manifolds. I. Ann. Mat. Pura. Appl. (4) 183(3), 261–289 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Console, S., Fino, A.: Dolbeault cohomology of compact nilmanifolds. Trans. Groups 6(2), 111–124 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cordero, L.A., Fernández, M., Gray, A.: The Frölicher spectral sequence and complex compact nilmanifolds. C. R. Acad. Sci. Paris Sér. I Math. 305(17), 753–756 (1987)

    MATH  Google Scholar 

  5. Cordero, L.A., Fernández, M., Gray, A.: The Frölicher spectral sequence for compact nilmanifolds. Illinois J. Math. 35(1), 56–67 (1991)

    MathSciNet  MATH  Google Scholar 

  6. Cordero, L.A., Fernandez, M., Gray, A., Ugarte, L.: Frölicher spectral sequence of compact nilmanifolds with nilpotent complex structure. In: New Developments in Differential Geometry, Budapest 1996, pp 77–102. Kluwer, Dordrecht (1999)

  7. Frölicher, A.: Relations between the cohomology groups of Dolbeault and topological invariants. Proc. Natl. Acad. Sci. USA 41, 641–644 (1955)

    Article  MATH  Google Scholar 

  8. Griffiths, Ph., Harris, J.: Principles of algebraic geometry. Pure and Applied Mathematics, Wiley–Interscience/Wiley, New York (1978)

    Google Scholar 

  9. Kodaira, K.: On the structure of compact complex analytic surfaces. I. Amer. J. Math. 86, 751– 798(1964)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nomizu, K.: On the cohomology of compact homogeneous spaces of nilpotent Lie groups. Ann. Math. 2(59), 531–538 (1954)

    Article  MathSciNet  Google Scholar 

  11. Pittie, H.V.: The nondegeneration of the Hodge–de Rham spectral sequence. Bull. Amer. Math. Soc. (N.S.) 20(1), 19–22 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rollenske, S.: Nilmanifolds: complex structures, geometry and deformations. PhD thesis, Universität Bayreuth (2007)

  13. Rollenske, S.: Nilmanifolds: complex structures, geometry and deformations. preprint (2007). arXiv:0709.0467v1 [math. AG]

  14. Sakane, Y.: On compact complex parallelisable solvmanifolds. Osaka J. Math. 13(1), 187–212 (1976)

    MathSciNet  MATH  Google Scholar 

  15. Salamon, S.M.: Complex structures on nilpotent Lie algebras. J. Pure Appl. Algebra 157(2–3), 311–333 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sönke Rollenske.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00208-013-0996-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rollenske, S. The Frölicher spectral sequence can be arbitrarily non-degenerate. Math. Ann. 341, 623–628 (2008). https://doi.org/10.1007/s00208-007-0206-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0206-z

Mathematics Subject Classification (2000)

Navigation