Skip to main content
Log in

From the Q-Tensor Flow for the Liquid Crystal to the Harmonic Map Flow

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we consider the solutions of the relaxed Q-tensor flow in \({\mathbb{R}^3}\) with small parameter \({\epsilon}\). We show that the limiting map is the so-called harmonic map flow. As a consequence, we present a new proof for the global existence of a weak solution for the harmonic map flow in three dimensions as in [18, 23], where the Ginzburg–Landau approximation approach was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball J., Majumdar A.: Nematic liquid crystals: from Maier–Saupe to a continum theory. Mol. Cryst. Liq. Cryst. 525, 1–11 (2010)

    Article  Google Scholar 

  2. Ball J., Zarnescu A.: Orientability and energy minimization in liquid crystal models. Arch. Ration. Mech. Anal. 202, 493–535 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beris, A., Edwards, B.: Thermodynamics of flowing systems with internal microstructure. Oxford Eng. Sci. Ser. 36, Oxford, Newtork, 1994

  4. Chen Y., Struwe M.: Existence and partial regularity results for the heat flow for harmonic maps. Math. Z. 201, 83–103 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. E W., Zhang P.: A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit. Methods Appl. Anal. 13, 181–198 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Feng J., Chaubal C.V., Leal L.G.: Closure approximations for the Doi theory: which to use in simulating complex flows of liquid-crystalline polymers?. J. Rheol. 42, 1095–1109 (1998)

    Article  ADS  Google Scholar 

  7. Feng J.J., Sgalari G., Leal L.G.: A theory for flowing nenmatic polymers with orientational distortion. J. Rheol. 44, 1085–1101 (2000)

    Article  ADS  Google Scholar 

  8. De Gennes, P.G.: The physics of liquid crystals. Clarendon Press, Oxford, 1974

  9. Han J., Luo Y., Wang W., Zhang P., Zhang Z.: From microscopic theory to macroscopic theory: a systematic study on modeling for liquid crystals. Arch. Ration. Mech. Anal. 215, 741–809 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang T., Wang C.: Blow up criterion for nematic liquid crystal flows. Comm. Partial Differ. Equ. 37, 875–884 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kuzuu N., Doi M.: Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation. J. Phys. Soc. Jpn. 52, 3486–3494 (1983)

    Article  ADS  Google Scholar 

  12. Majumdar A.: Equilibrium order parameters of liquid crystals in the Landau–de Gennes theory. Eur. J. Appl. Math. 21(02), 181–203 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mottram, N., Newton, C.: Introduction to Q-tensor theory. University of Strethclyde, Department of Mathematics, Research Report, vol. 10, 2004

  14. Majumdar A., Zarnescu A.: Landau–De Gennes theory of nematic liquid crystals: the Oseen–Frank limit and beyond. Arch. Ration. Mech. Anal. 196, 227–280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Paicu M., Zarnescu, A.: Energy dissipation and regularity for a coupled Navier–Stokes and Q-tensor system. Arch. Ration. Mech. Anal. 203, 45–67, 2012

  16. Paicu M., Zarnescu A.: Global existence and regularity for the full coupled Navier–Stokes and Q-tensor system. SIAM J. Math. Anal. 43, 2009–2049 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Qian T., Sheng P.: Generalized hydrodynamic equations for nematic liquid crystals. Phys. Rev. E 58, 7475–7485 (1998)

    Article  ADS  Google Scholar 

  18. Rubinstein J., Sternberg P., Keller J.B.: Reaction-diffusion processes and evolution to harmonic maps. SIAM J. Appl. Math. 49, 1722–1733 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schoen R.M., Uhlenbeck K.: A regularity theory for harmonic maps. J. Differ. Geom. 17, 307–335 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang W., Zhang P., Zhang Z.: The small Deborah number limit of the Doi-Onsarger equation to the Ericksen–Leslie equation. Comm. Pure Appl. Math. 68, 1326–1398 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang W., Zhang P., Zhang Z.: Rigorous derivation from Landau–de Gennes theorey to Ericksen–Leslie theory. SIAM J. Math. Anal. 47, 127–158 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nguyen L., Zarnescu A.: Refined approximation for minimizers of a Landau–de Gennes energy functional. Calc. Var. Partial Differ. Equ. 47, 383–432 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Struwe M.: On the evolution of harmonic maps in higher dimension. J. Differ. Geom. 28, 485–502 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendong Wang.

Additional information

Communicated by W. E

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Wang, W. & Zhang, Z. From the Q-Tensor Flow for the Liquid Crystal to the Harmonic Map Flow. Arch Rational Mech Anal 225, 663–683 (2017). https://doi.org/10.1007/s00205-017-1111-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1111-6

Navigation