Skip to main content
Log in

An asymptotic approximation of the magnetic field and forces in electrical machines with rotor eccentricity

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In this contribution, a systematic asymptotic derivation of approximate solutions to the magnetic field problem in rotating electric machines with an eccentrically running rotor is proposed. It is consistent with the well-known permeance harmonic method and can be seen as an alternative view on the derivation of the magnetic flux density and resulting lateral forces in the air gap of the machine. The asymptotic expansion is based on a purely geometric small parameter and applies even for large rotor eccentricities. The advantage of this method lies in its extensibility towards higher approximation orders, and in the fact that it is possible to quantify the order of the involved approximation error. The discussion includes two examples and a numerical verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rosenberg E (1917) Einseitiger magnetischer Zug in elektrischen Maschinen. E. und M. 35:525–531

    Google Scholar 

  2. Woodson HH, Melcher JR (2009) Electromechanical dynamics part 1. Massachusetts Institute of Technology, MIT OpenCourseWare, Cambridge

    Google Scholar 

  3. Müller G, Vogt K, Ponick B (2008) Berechnung elektrischer Maschinen. Wiley-VCH, Weinheim

    Google Scholar 

  4. Dorrell DG, Hermann A, Jensen BB (2013) Analysis of unbalanced magnetic pull in wound rotor induction machines using finite element analysis—transient, motoring and generating modes. In: Industrial electronics society, IECON 2013—39th annual conference of the IEEE 7307–7312

  5. Arkkio A et al (2000) Electromagnetic force on a whirling cage rotor. IEE Proc Electr Power Appl 147:353–360

    Article  Google Scholar 

  6. Tenhunen A et al (2003) Electromagnetic forces of the cage rotor in conical whirling motion. IEE Proc Electr Power Appl 150:563–568

    Article  Google Scholar 

  7. Burakov A, Arkkio A (2007) Low-order parametric force model for eccentric-rotor electrical machine equipped with parallel stator windings and rotor cage. IET Electr Power Appl 1:532–542

  8. Tenhunen A, Holopainen TP, Arkkio A (2004) Effects of saturation on the forces in induction motors with whirling cage rotor. IEEE Trans Magn 40:766–769

    Article  Google Scholar 

  9. Frauman P, Burakov A, Arkkio A (2007) Effects of the slot harmonics on the unbalanced magnetic pull in an induction motor with an eccentric rotor. IEEE Trans Magn 43:3441–3444

    Article  Google Scholar 

  10. Buchholz H (1933) Die mechanischen Kräfte auf den exzentrisch rotierenden, zylindrischen Läufer einer zweipoligen Drehfeldmaschine mit flächenhaft verteilten Strombelägen. Electr Eng (Archiv für Elektrotechnik) 27:423–447

    Article  MATH  Google Scholar 

  11. Skubov D, Shumakovich IV (1999) Stability of the rotor of an induction machine in the magnetic field of the current windings. Mech Solids 34:28–40

    Google Scholar 

  12. Werner U (2006) Rotordynamische analyse von Asynchronmaschinen mit magnetischen Unsymmetrien. Dissertation, University of Darmstadt

  13. Frohne H (1968) Über den einseitigen magnetischen Zug in Drehfeldmaschinen. Electr Eng (Archiv für Elektrotechnik) 51:300–308

    Article  Google Scholar 

  14. Früchtenicht J, Jordan H, Seinsch H (1982) Exzentrizitätsfelder als Ursache von Laufinstabilitäten bei Asynchronmaschinen Teil 1. Electr Eng (Archiv für Elektrotechnik) 51:271–281

    Article  Google Scholar 

  15. Belmans R, Vandenput A, Geysen W (1987) Calculation of the flux density and the unbalanced pull in two pole induction machines. Electr Eng (Archiv für Elektrotechnik) 70:151–161

    Article  Google Scholar 

  16. Jordan H, Schroeder RD, Seinsch H (1981) Zur Berechnung einseitigmagnetischer Zugkräfte in Drehfeldmaschienen. Electr Eng (Archiv für Elektrotechnik) 63:117–124

    Article  Google Scholar 

  17. Dorrell DG (1993) Calculation of unbalanced magnetic pull in cage induction machines. Dissertation, University of Cambridge

  18. Merkin DR (2012) Introduction to the theory of stability. Springer, New York

    Google Scholar 

  19. Kim U, Lieu DK (1998) Magnetic field calculation in permanent magnet motors with rotor eccentricity: without slotting effect. IEEE Trans Magn 34:2243–2252

    Article  Google Scholar 

  20. Rothwell EJ, Cloud MJ (2001) Electromagnetics. CRC Press, Boca Raton

    Book  Google Scholar 

  21. Binder A (2012) Elektrische maschinen und antriebe. Springer, Heidelberg

    Book  Google Scholar 

  22. Jordan H, Weis M (1970) Synchronmaschinen I. Vieweg & Sohn GmbH, Braunschweig

    Google Scholar 

  23. Hague B (1929) Electromagnetic problems in electrical engineering. Oxford University Press, Oxford

    Google Scholar 

  24. Seinsch HO (1992) Oberfelderscheinungen in Drehfeldmaschinen. B.G. Teubner, Stuttgart

  25. Jordan H (1969) Asynchronmaschinen. Springer Fachmedien, Wiesbaden

    Book  Google Scholar 

  26. Kellenberger W (1966) Der magnetische zug in turbogenerator-rotoren als ursache einer Instabilität des mechanischen Laufes. Electr Eng (Archiv für Elektrotechnik) 50:253–265

    Article  Google Scholar 

  27. Nayfeh AH (1973) Pertubation methods. Wiley, New York

    Google Scholar 

  28. Szeri A (2010) Fluid film lubrication. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Boy.

Appendix

Appendix

Within this appendix, some peculiarities concerning the calculation of the electromagnetic force as described in Sects. 3 and 4 will be discussed and part of the magnetic potential of order \(\mathcal O(\varepsilon ^2)\) will be shown.

To derive the Force, one can start from expression (28) for a first-order approach and insert the radial flux density (Eq. (26)). The force formula reads

$$\begin{aligned} \mathbf {F}_{\text {elm}, R} =&\frac{\mu _0 r_1 \ell }{2 \delta _\mathrm{m}^2} \int _0^{2 \pi } \underbrace{\frac{(V_2(\theta ,t) - V_1(\theta ,t) - V_0(t))^2}{(1-\tilde{e}\cos \theta )^2}}_{g(\theta )} \nonumber \\&(\cos \theta \mathbf {e}_\delta + \sin \theta \mathbf {e}_t) \text {d} \theta . \end{aligned}$$
(40)

Due to the general orthogonality of trigonometric functions and the instance that the term \(g(\theta )\) is multiplied with \(\cos \theta \) and \(\sin \theta \), respectively, the involved task reduces to calculating the first harmonic of g. To do so, \(h(\theta ) = \frac{1}{(1-\tilde{e}\cos \theta )^2}\) can be expanded into a Fourier series \(\mathcal F(h(\theta ))\). After that, the product \(g(\theta ) = \mathcal F((V_2(\theta ,t) - V_1(\theta ,t) - V_0(t))^2)\mathcal F(h(\theta ))\) is evaluated as a convolution of the Fourier coefficients.

The derivation of the Fourier series of h can be done using complex phasors. Its result

$$\begin{aligned} g(\theta ) = \frac{a_0}{2} + \sum _{n=0}^\infty a_n \cos (n \theta ), \end{aligned}$$
(41)

with

$$\begin{aligned} a_n = 2\frac{(1-\sqrt{(1-\tilde{e}^2)})^n(n \sqrt{1-\tilde{e}^2}+1)}{(1-\tilde{e}^2)^{\frac{3}{2}}\tilde{e}^n}, \end{aligned}$$
(42)

is similar to the Fourier series of the air gap permeance, as it is often used for the linear analysis in literature [13]. Furthermore, the similarity of the involved integrals and the Sommerfeld integrals in the theory of journal bearings [28] shall be mentioned. Their analogy is remarkable and also perspicuous, due to the similarity of the calculation procedure of the forces.

Evaluating as described above, formula (28) for the shown example can be evaluated in a straight forward manner, resulting in Eq. (34).

The second issue of this appendix is to provide the formula for the part of order \(\mathcal O(\varepsilon ^2)\) of the magnetic potential. It reads

$$\begin{aligned}&\mathcal V^{(2)} = \bigg [F_1(\psi )\left( \frac{{\tilde{s}}}{{\tilde{\delta }}^{(0)}}\right) ^2 + F_2(\psi )\frac{{\tilde{s}}}{{\tilde{\delta }}^{(0)}} + F_3(\psi )\bigg ] \nonumber \\&\quad \frac{{\tilde{s}}}{{\tilde{\delta }}^{(0)}}\big (V_1 + V_0 - V_2^{(0)}\big ) + \bigg [ F_4(\psi )\left( \frac{{\tilde{s}}}{{\tilde{\delta }}^{(0)}}\right) ^2 + F_5(\psi ) \nonumber \\&\quad \frac{{\tilde{s}}}{{\tilde{\delta }}^{(0)}} + F_6(\psi ) \bigg ]\frac{{\tilde{s}}}{{\tilde{\delta }}^{(0)}}\frac{\partial }{\partial \psi }\big (V_1 + V_0 - V_2^{(0)}\big ) + \frac{({\tilde{\delta }}^{(0)})^2}{6} \nonumber \\&\quad \bigg [ \left( \frac{{\tilde{s}}}{{\tilde{\delta }}^{(0)}}\right) ^2 - 1\bigg ] \frac{{\tilde{s}}}{{\tilde{\delta }}^{(0)}}\frac{\partial ^2}{\partial \psi ^2}\big (V_1 + V_0 - V_2^{(0)}\big ) + F_7(\psi )\nonumber \\&\quad \left( \frac{{\tilde{s}}}{{\tilde{\delta }}^{(0)}}\right) ^2 + F_8(\psi ) \frac{{\tilde{s}}}{{\tilde{\delta }}^{(0)}}, \end{aligned}$$
(43)

where

$$\begin{aligned} F_1(\psi ) =&\, \frac{1}{12}\bigg ( 4 ({\tilde{\delta }}^{(0)})^2 + 4 \bigg (\frac{\partial \delta ^{(0)}}{\partial \psi }\bigg )^2 - 2\frac{\partial ^2 {\tilde{\delta }}^{(0)}}{\partial \psi ^2} {\tilde{\delta }}^{(0)} \bigg ), \\ F_2(\psi ) =&\, \frac{1}{4}\bigg ( 4 {\tilde{\delta }}^{(0)}{\tilde{e}} \cos \psi + 2 {\tilde{\delta }}^{(1)} - ({\tilde{\delta }}^{(0)})^2 - 4 \frac{\partial {\tilde{\delta }}^{(0)}}{\partial \psi } {\tilde{e}} \sin \psi \bigg ), \\ F_3(\psi ) =&\, \frac{1}{12}\bigg ( 2 {\tilde{\delta }}^{(0)} \frac{\partial ^2 {\tilde{\delta }}^{(0)}}{\partial \psi ^2} + 12 \frac{\partial {\tilde{\delta }}^{(0)}}{\partial \psi }{\tilde{e}} \sin \psi - ({\tilde{\delta }}^{(0)})^2 \\&- 12 {\tilde{\delta }}^{(0)}{\tilde{e}} \cos \psi - 4\bigg (\frac{\partial {\tilde{\delta }}^{(0)}}{\partial \psi }\bigg )^2 + 12 \bigg (\frac{{\tilde{\delta }}^{(1)}}{{\tilde{\delta }}^{(0)}}\bigg )^2\bigg ), \\ F_4(\psi ) =&\, -\frac{1}{3} {\tilde{\delta }}^{(0)} \frac{\partial {\tilde{\delta }}^{(0)}}{\partial \psi }, \quad F_5(\psi ) =\, {\tilde{\delta }}^{(0)}{\tilde{e}} \sin \psi , \\ F_6(\psi ) =&\, \frac{1}{3}\bigg ({\tilde{\delta }}^{(0)} \frac{\partial {\tilde{\delta }}^{(0)}}{\partial \psi } - 3 {\tilde{\delta }}^{(0)} {\tilde{e}} \sin \psi \bigg ), \\ F_7(\psi ) =&\, \frac{1}{2}\bigg ({\tilde{\delta }}^{(0)}V_2^{(1)} + ({\tilde{\delta }}^{(0)})^2 \frac{\partial ^2 V_2^{(0)}}{\partial \psi ^2}\bigg ), \\ F_8(\psi ) =&\, \frac{1}{2}\bigg ( 2 \frac{{\tilde{\delta }}^{(1)}}{{\tilde{\delta }}^{(0)}}V_2^{(1)} - {\tilde{\delta }}^{(0)}V_2^{(1)} - ({\tilde{\delta }}^{(0)})^2 \frac{\partial ^2 V_2^{(0)}}{\partial \psi ^2}\bigg ). \end{aligned}$$

As one can see, the solution becomes very unhandy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boy, F., Hetzler, H. An asymptotic approximation of the magnetic field and forces in electrical machines with rotor eccentricity. Electr Eng 100, 389–399 (2018). https://doi.org/10.1007/s00202-017-0512-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-017-0512-8

Keywords

Navigation