## Abstract

This paper studies the problem of updating the super-replication prices of arbitrage-free finite financial markets with a frictionless bond. Any super-replication price is a pricing rule represented as the support function of some polytope of probabilities containing at least one strict positive probability, which captures the closure of the set of risk-neutral probabilities of any underlying market consistent with the given pricing rule. We show that a weak form of dynamic consistency characterizes the full (prior-by-prior) Bayesian updating of pricing rules. In order to study the problem of updating pricing rules revealing incomplete markets without frictions on all tradable securities, we first show that the corresponding polytope of probabilities must be non-expansible. We find that the full Bayesian updating does not preserve non-expansibility, unless a condition of non-trivial updating is satisfied. Finally, we show that the full Bayesian updating of pricing rules of efficient complete markets is completely stable. We also show that efficient complete markets with uniform bid–ask spreads are stable under full Bayesian updating, while efficient complete markets that fulfill the put–call parity are stable only under a Choquet pricing rule computed with respect to a regular concave nonadditive risk-neutral probability.

## Keywords

Pricing rules Full Bayesian update Incomplete markets Efficient complete markets Bid–ask spreads## JEL Classification

D52 D53## References

- Acciaio, B., Föllmer, H., Penner, I.: Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles. Finance Stoch.
**16**(4), 669–709 (2012)CrossRefGoogle Scholar - Al-Najjar, N.I., Weinstein, J.: The ambiguity aversion literature: a critical assessment. Econ. Philos.
**25**(03), 249–284 (2009)CrossRefGoogle Scholar - Araujo, A., Chateauneuf, A., Faro, J.: Pricing rules and Arrow–Debreu ambiguous valuation. Econ. Theory
**49**, 1–35 (2012). https://doi.org/10.1007/s00199-011-0660-4 CrossRefGoogle Scholar - Araujo, A., Chateauneuf, A., Faro, J.H.: Financial market structures revealed by pricing rules: efficient complete markets are prevalent. J. Econ. Theory (2017). https://doi.org/10.1016/j.jet.2017.11.002
- Castagnoli, E., Maccheroni, F., Marinacci, M.: Insurance premia consistent with the market. Insur. Math. Econ.
**31**(2), 267–284 (2002). https://doi.org/10.1016/S0167-6687(02)00155-5 CrossRefGoogle Scholar - Castagnoli, E., Favero, G., Maccheroni, F.: A problem in sublinear pricing along time. Paper presented at VIII Workshop on Quantitative Finance, Università Ca’ Foscari di Venezia, 30123 Venezia, Italy. http://virgo.unive.it/quantitativefinance2007/viewabstract.php?id=129 (2006)
- Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M.: Put-call parity and market frictions. J. Econ. Theory
**157**, 730–762 (2015). https://doi.org/10.1016/j.jet.2014.12.011 CrossRefGoogle Scholar - Chateauneuf, A., Jaffray, J.Y.: Local möbius transforms of monotone capacities. In: Symbolic and Quantitative Approaches to Reasoning and Uncertainty, pp. 115–124. Springer, Berlin (1995). https://doi.org/10.1007/3-540-60112-0_14
- Chateauneuf, A., Kast, R., Lapied, A.: Choquet pricing for financial markets with frictions. Math. Finance
**6**, 323–330 (1996)CrossRefGoogle Scholar - Chateauneuf, A., Gajdos, T., Jaffray, J.Y.: Regular updating. Theory Decis.
**71**, 111–128 (2011)CrossRefGoogle Scholar - Cox, J.C., Ross, S.A.: The valuation of options for alternative stochastic processes. J. Financ. Econ.
**3**, 145–166 (1976)CrossRefGoogle Scholar - Detlefsen, K., Scandolo, G.: Conditional and dynamic convex risk measures. Finance Stoch.
**9**(4), 539–561 (2005)CrossRefGoogle Scholar - Epstein, L., Le Breton, M.: Dynamically consistent beliefs must be Bayesian. J. Econ. Theory
**61**(1), 1–22 (1993)CrossRefGoogle Scholar - Epstein, L.G., Schneider, M.: Recursive multiple-priors. J. Econ. Theory
**113**, 1–31 (2003). https://doi.org/10.1016/S0022-0531(03)00097-8 CrossRefGoogle Scholar - Fagin, R., Halpern, J.Y.: A new approach to updating beliefs. In: Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence (1990)Google Scholar
- Faro, J.H., Lefort, J.P.: Dynamic objective and subjective rationality. Insper Working Papers wpe312, Insper Working Paper, Insper Instituto de Ensino e Pesquisa. https://ideas.repec.org/p/ibm/ibmecp/wpe_312.html (2013)
- Florenzano, M., Gourdel, P., Van, C.: Finite Dimensional Convexity and Optimization. Studies in Economic Theory. Springer, Berlin (2001)CrossRefGoogle Scholar
- Galanis, S.: Dynamic consistency and subjective beliefs. Tech. rep., mimeo. https://doi.org/10.2139/ssrn.2756612. https://ssrn.com/abstract=2756612 (2017). Accessed 1 Nov 2017
- Ghirardato, P.: Revisiting savage in a conditional world. Econ. Theory
**20**(1), 83–92 (2002). https://doi.org/10.1007/s001990100188 CrossRefGoogle Scholar - Ghirardato, P., Maccheroni, F., Marinacci, M.: Revealed Ambiguity and Its Consequences: Updating, Chapter 1, pp. 3–18. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-68437-4_1 Google Scholar
- Hansen, L., Jagannathan, R.: Implications of security market data for models of dynamic economies. J. Polit. Econ.
**99**(2), 225–262 (1991)CrossRefGoogle Scholar - Harrison, J.M., Kreps, D.: Martingales and arbitrage in multiperiod securities markets. J. Econ. Theory
**20**(3), 381–408 (1979)CrossRefGoogle Scholar - Huber, P.J.: Robust Statistics. Wiley Series in Probabilities and Mathematical Statistics. Wiley, New York (1981)Google Scholar
- Jaffray, J.Y.: Bayesian updating and belief functions. IEEE Trans. Syst. Man Cybern.
**22**, 1144–1152 (1992)CrossRefGoogle Scholar - Jouini, E.: Price functionals with bidask spreads: an axiomatic approach. J. Math. Econ.
**34**(4), 547–558 (2000). https://doi.org/10.1016/S0304-4068(99)00023-3 CrossRefGoogle Scholar - Jouini, E., Kallal, H.: Martingales and arbitrage in securities markets with transaction costs. J. Econ. Theory
**66**, 178–197 (1995)CrossRefGoogle Scholar - Jouini, E., Kallal, H.: Efficient trading strategies in the presence of market frictions. Rev. Financ. Stud.
**14**(2), 343–369 (2001)CrossRefGoogle Scholar - Luttmer, E.G.J.: Asset pricing in economies with frictions. Econometrica
**64**(6), 1439–1467 (1996)CrossRefGoogle Scholar - Pires, C.P.: A rule for updating ambiguous beliefs. Theory Decis.
**53**, 137–152 (2002)CrossRefGoogle Scholar - Rockafellar, R.: Convex Analysis. Princeton University Press, Princeton (1997)Google Scholar
- Ross, S.A.: The arbitrage theory of capital asset pricing. J. Econ. Theory
**13**, 341–360 (1976)CrossRefGoogle Scholar - Ross, S.A.: A simple approach to the valuation of risky streams. J. Bus.
**51**, 453–475 (1978)CrossRefGoogle Scholar - Schmeidler, D.: Integral representation without additivity. Proc. Am. Math. Soc.
**97**, 255–261 (1986)CrossRefGoogle Scholar - Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory. Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar
- Siniscalchi, M.: Dynamic choice under ambiguity. Theor. Econ.
**6**(3). https://EconPapers.repec.org/RePEc:the:publsh:571 (2011). Accessed 15 Aug 2017 - Tutsch, S.: Update rules for convex risk measures. Quant. Finance
**8**(8), 833–843 (2008)CrossRefGoogle Scholar